Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 14497, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262086

RESUMEN

The circadian clock is a cellular mechanism that synchronizes various biological processes with respect to the time of the day. While much progress has been made characterizing the molecular mechanisms underlying this clock, it is less clear how external light cues influence the dynamics of the core clock mechanism and thereby entrain it with the light-dark cycle. Zebrafish-derived cell cultures possess clocks that are directly light-entrainable, thus providing an attractive laboratory model for circadian entrainment. Here, we have developed a stochastic oscillator model of the zebrafish circadian clock, which accounts for the core clock negative feedback loop, light input, and the proliferation of single-cell oscillator noise into population-level luminescence recordings. The model accurately predicts the entrainment dynamics observed in bioluminescent clock reporter assays upon exposure to a wide range of lighting conditions. Furthermore, we have applied the model to obtain refitted parameter sets for cell cultures exposed to a variety of pharmacological treatments and predict changes in single-cell oscillator parameters. Our work paves the way for model-based, large-scale screens for genetic or pharmacologically-induced modifications to the entrainment of circadian clock function.


Asunto(s)
Ritmo Circadiano/fisiología , Modelos Biológicos , Pez Cebra , Animales , Animales Modificados Genéticamente , Butadienos/farmacología , Células Cultivadas , Ritmo Circadiano/efectos de los fármacos , Colforsina/farmacología , CMP Cíclico/análogos & derivados , CMP Cíclico/farmacología , Mediciones Luminiscentes , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Nitrilos/farmacología , Reproducibilidad de los Resultados , Análisis de la Célula Individual , Procesos Estocásticos , Pez Cebra/genética
2.
Methods Mol Biol ; 362: 429-41, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17417032

RESUMEN

Cell lines derived from zebrafish embryos show great potential as cell culture tools to study the regulation and function of the vertebrate circadian clock. They exhibit directly light-entrainable rhythms of clock gene expression that can be established by simply exposing cultures to light-dark cycles. Mammalian cell lines require treatments with serum or activators of signaling pathways to initiate transient, rapidly dampening clock rhythms. Furthermore, zebrafish cells grow at room temperature, are viable for long periods at confluence, and do not require a CO2-enriched atmosphere, greatly simplifying culture conditions. Here we describe detailed methods for establishing zebrafish cell cultures as well as optimizing transient and stable transfections. These protocols have been successfully used to introduce luciferase reporter constructs into the cells and thereby monitor clock gene expression in vivo. The bioluminescence assay described here lends itself particularly well to high-throughput analysis.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Pez Cebra , Animales , Línea Celular , Ritmo Circadiano/genética , Criopreservación , Electroporación , Expresión Génica , Luciferasas/genética , Transfección/métodos , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/fisiología
3.
PLoS Biol ; 3(11): e351, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16176122

RESUMEN

It has been well-documented that temperature influences key aspects of the circadian clock. Temperature cycles entrain the clock, while the period length of the circadian cycle is adjusted so that it remains relatively constant over a wide range of temperatures (temperature compensation). In vertebrates, the molecular basis of these properties is poorly understood. Here, using the zebrafish as an ectothermic model, we demonstrate first that in the absence of light, exposure of embryos and primary cell lines to temperature cycles entrains circadian rhythms of clock gene expression. Temperature steps drive changes in the basal expression of certain clock genes in a gene-specific manner, a mechanism potentially contributing to entrainment. In the case of the per4 gene, while E-box promoter elements mediate circadian clock regulation, they do not direct the temperature-driven changes in transcription. Second, by studying E-box-regulated transcription as a reporter of the core clock mechanism, we reveal that the zebrafish clock is temperature-compensated. In addition, temperature strongly influences the amplitude of circadian transcriptional rhythms during and following entrainment by light-dark cycles, a property that could confer temperature compensation. Finally, we show temperature-dependent changes in the expression levels, phosphorylation, and function of the clock protein, CLK. This suggests a mechanism that could account for changes in the amplitude of the E-box-directed rhythm. Together, our results imply that several key transcriptional regulatory elements at the core of the zebrafish clock respond to temperature.


Asunto(s)
Ritmo Circadiano , Transcripción Genética , Animales , Temperatura Corporal , Calibración , Línea Celular , Expresión Génica , Luz , Modelos Biológicos , Datos de Secuencia Molecular , Temperatura , Factores de Transcripción/metabolismo , Pez Cebra
4.
Proc Natl Acad Sci U S A ; 101(12): 4106-11, 2004 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-15024110

RESUMEN

In most organisms, light plays a key role in the synchronization of the circadian timing system with the environmental day-night cycle. Light pulses that phase-shift the circadian clock also induce the expression of period (per) genes in vertebrates. Here, we report the cloning of a zebrafish per gene, zfper4, which is remarkable in being repressed by light. We have developed an in vivo luciferase reporter assay for this gene in cells that contain a light-entrainable clock. High-definition bioluminescence traces have enabled us to accurately measure phase-shifting of the clock by light. We have also exploited this model to study how four E-box elements in the zfper4 promoter regulate expression. Mutagenesis reveals that the integrity of these four E-boxes is crucial for maintaining low basal expression together with robust rhythmicity and repression by light. Importantly, in the context of a minimal heterologous promoter, the E-box elements also direct a robust circadian rhythm of expression that is significantly phase-advanced compared with the original zfper4 promoter and lacks the light-repression property. Thus, these results reveal flexibility in the phase and light responsiveness of E-box-directed rhythmic expression, depending on the promoter context.


Asunto(s)
Elementos E-Box/fisiología , Regulación de la Expresión Génica/fisiología , Luz , Animales , Ritmo Circadiano/genética , Genes Reporteros , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Circadianas Period , Regiones Promotoras Genéticas , Transfección , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...