Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499491

RESUMEN

Male development in mammals depends on the activity of the two SOX gene: Sry and Sox9, in the embryonic testis. As deletion of Enhancer 13 (Enh13) of the Sox9 gene results in XY male-to-female sex reversal, we explored the critical elements necessary for its function and hence, for testis and male development. Here, we demonstrate that while microdeletions of individual transcription factor binding sites (TFBS) in Enh13 lead to normal testicular development, combined microdeletions of just two SRY/SOX binding motifs can alone fully abolish Enh13 activity leading to XY male-to-female sex reversal. This suggests that for proper male development to occur, these few nucleotides of non-coding DNA must be intact. Interestingly, we show that depending on the nature of these TFBS mutations, dramatically different phenotypic outcomes can occur, providing a molecular explanation for the distinct clinical outcomes observed in patients harboring different variants in the same enhancer.

2.
Int J Biol Sci ; 20(3): 1024-1041, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250158

RESUMEN

The testis is responsible for sperm production and androgen synthesis. Abnormalities in testis development and function lead to disorders of sex development and male infertility. Currently, no in vitro system exists for modelling the testis. Here, we generated testis organoids from neonatal mouse primary testicular cells using transwell inserts and show that these organoids generate tubule-like structures and cellular organization resembling that of the in vivo testis. Gene expression analysis of organoids demonstrates a profile that recapitulates that observed in in vivo testis. Embryonic testicular cells, but not adult testicular cells are also capable of forming organoids. These organoids can be maintained in culture for 8-9 weeks and shows signs of entry into meiosis. We further developed defined media compositions that promote the immature versus mature Sertoli cell and Leydig cell states, enabling organoid maturation in vitro. These testis organoids are a promising model system for basic research of testes development and function, with translational applications for elucidation and treatment of developmental sex disorders and infertility.


Asunto(s)
Semen , Testículo , Masculino , Animales , Ratones , Organoides , Espermatozoides , Meiosis
3.
Mol Reprod Dev ; 90(12): 785-803, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37997675

RESUMEN

The process of aging refers to physiological changes that occur to an organism as time progresses and involves changes to DNA, proteins, metabolism, cells, and organs. Like the rest of the cells in the body, gametes age, and it is well established that there is a decline in reproductive capabilities in females and males with aging. One of the major pathways known to be involved in aging is epigenetic changes. The epigenome is the multitude of chemical modifications performed on DNA and chromatin that affect the ability of chromatin to be transcribed. In this review, we explore the effects of aging on female and male gametes with a focus on the epigenetic changes that occur in gametes throughout aging. Quality decline in oocytes occurs at a relatively early age. Epigenetic changes constitute an important part of oocyte aging. DNA methylation is reduced with age, along with reduced expression of DNA methyltransferases (DNMTs). Histone deacetylases (HDAC) expression is also reduced, and a loss of heterochromatin marks occurs with age. As a consequence of heterochromatin loss, retrotransposon expression is elevated, and aged oocytes suffer from DNA damage. In sperm, aging affects sperm number, motility and fecundity, and epigenetic changes may constitute a part of this process. 5 methyl-cytosine (5mC) methylation is elevated in sperm from aged men, but methylation on Long interspersed nuclear elements (LINE) elements is reduced. Di and trimethylation of histone 3 lysine 9 (H3K9me2/3) is reduced in sperm from aged men and trimethylation of histone 3 lysine 27 (H3K27me3) is elevated. The protamine makeup of sperm from aged men is also changed, with reduced protamine expression and a misbalanced ratio between protamine proteins protamine P1 and protamine P2. The study of epigenetic reproductive aging is recently gaining interest. The current status of the field suggests that many aspects of gamete epigenetic aging are still open for investigation. The clinical applications of these investigations have far-reaching consequences for fertility and sociological human behavior.


Asunto(s)
Heterocromatina , Histonas , Animales , Masculino , Humanos , Femenino , Anciano , Histonas/metabolismo , Heterocromatina/metabolismo , Lisina/metabolismo , Semen/metabolismo , Células Germinativas/metabolismo , Metilación de ADN , Epigénesis Genética , Cromatina/genética , Cromatina/metabolismo , ADN/metabolismo , Protaminas/metabolismo , Mamíferos/genética
4.
Sci Adv ; 9(1): eabn9793, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36598988

RESUMEN

During embryonic development, mutually antagonistic signaling cascades determine gonadal fate toward a testicular or ovarian identity. Errors in this process result in disorders of sex development (DSDs), characterized by discordance between chromosomal, gonadal, and anatomical sex. The absence of an appropriate, accessible in vitro system is a major obstacle in understanding mechanisms of sex-determination/DSDs. Here, we describe protocols for differentiation of mouse and human pluripotent cells toward gonadal progenitors. Transcriptomic analysis reveals that the in vitro-derived murine gonadal cells are equivalent to embryonic day 11.5 in vivo progenitors. Using similar conditions, Sertoli-like cells derived from 46,XY human induced pluripotent stem cells (hiPSCs) exhibit sustained expression of testis-specific genes, secrete anti-Müllerian hormone, migrate, and form tubular structures. Cells derived from 46,XY DSD female hiPSCs, carrying an NR5A1 variant, show aberrant gene expression and absence of tubule formation. CRISPR-Cas9-mediated variant correction rescued the phenotype. This is a robust tool to understand mechanisms of sex determination and model DSDs.


Asunto(s)
Disgenesia Gonadal 46 XY , Células Madre Pluripotentes Inducidas , Masculino , Animales , Ratones , Humanos , Femenino , Reprogramación Celular/genética , Gónadas , Disgenesia Gonadal 46 XY/genética
5.
Front Cell Dev Biol ; 11: 1327410, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283992

RESUMEN

Gonadal sex determination in mice is a complex and dynamic process, which is crucial for the development of functional reproductive organs. The expression of genes involved in this process is regulated by a variety of genetic and epigenetic mechanisms. Recently, there has been increasing evidence that transposable elements (TEs), which are a class of mobile genetic elements, play a significant role in regulating gene expression during embryogenesis and organ development. In this study, we aimed to investigate the involvement of TEs in the regulation of gene expression during mouse embryonic gonadal development. Through bioinformatics analysis, we aimed to identify and characterize specific TEs that operate as regulatory elements for sex-specific genes, as well as their potential mechanisms of regulation. We identified TE loci expressed in a time- and sex-specific manner along fetal gonad development that correlate positively and negatively with nearby gene expression, suggesting that their expression is integrated to the gonadal regulatory network. Moreover, chromatin accessibility and histone post-transcriptional modification analyses in differentiating supporting cells revealed that TEs are acquiring a sex-specific signature for promoter-, enhancer-, and silencer-like elements, with some of them being proximal to critical sex-determining genes. Altogether, our study introduces TEs as the new potential players in the gene regulatory network that controls gonadal development in mammals.

6.
Sex Dev ; 16(2-3): 80-91, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35760052

RESUMEN

SOX genesare master regulatory genes controlling development and are fundamental to the establishment of sex determination in a multitude of organisms. The discovery of the master sex-determining gene SRY in 1990 was pivotal for the understanding of how testis development is initiated in mammals. With this discovery, an entire family of SOX factors were uncovered that play crucial roles in cell fate decisions during development. The importance of SOX genes in human reproductive development is evident from the various disorders of sex development (DSD) upon loss or overexpression of SOX gene function. Here, we review the roles that SOX genes play in gonad development and their involvement in DSD. We start with an overview of sex determination and differentiation, DSDs, and the SOX gene family and function. We then provide detailed information and discussion on SOX genes that have been implicated in DSDs, both at the gene and regulatory level. These include SRY, SOX9, SOX3, SOX8, and SOX10. This review provides insights on the crucial balance of SOX gene expression levels needed for gonad development and maintenance and how changes in these levels can lead to DSDs.


Asunto(s)
Trastornos del Desarrollo Sexual , Factor de Transcripción SOX9 , Animales , Humanos , Masculino , Trastornos del Desarrollo Sexual/genética , Trastornos del Desarrollo Sexual/metabolismo , Procesos de Determinación del Sexo/genética , Diferenciación Sexual , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Testículo/metabolismo
7.
Sex Dev ; 15(5-6): 293-294, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34823254

Asunto(s)
Genoma
8.
Sex Dev ; 15(5-6): 317-334, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34710870

RESUMEN

Sex determination is the process by which an initial bipotential gonad adopts either a testicular or ovarian cell fate. The inability to properly complete this process leads to a group of developmental disorders classified as disorders of sex development (DSD). To date, dozens of genes were shown to play roles in mammalian sex determination, and mutations in these genes can cause DSD in humans or gonadal sex reversal/dysfunction in mice. However, exome sequencing currently provides genetic diagnosis for only less than half of DSD patients. This points towards a major role for the non-coding genome during sex determination. In this review, we highlight recent advances in our understanding of non-coding, cis-acting gene regulatory elements and discuss how they may control transcriptional programmes that underpin sex determination in the context of the 3-dimensional folding of chromatin. As a paradigm, we focus on the Sox9 gene, a prominent pro-male factor and one of the most extensively studied genes in gonadal cell fate determination.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Gónadas , Procesos de Determinación del Sexo , Animales , Trastornos del Desarrollo Sexual/genética , Femenino , Gónadas/crecimiento & desarrollo , Humanos , Masculino , Mamíferos/genética , Ratones , Ovario , Secuencias Reguladoras de Ácidos Nucleicos , Factor de Transcripción SOX9/genética , Procesos de Determinación del Sexo/genética , Testículo
9.
Proc Natl Acad Sci U S A ; 117(24): 13680-13688, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32493750

RESUMEN

Sex determination in mammals is governed by antagonistic interactions of two genetic pathways, imbalance in which may lead to disorders/differences of sex development (DSD) in human. Among 46,XX individuals with testicular DSD (TDSD) or ovotesticular DSD (OTDSD), testicular tissue is present in the gonad. Although the testis-determining gene SRY is present in many cases, the etiology is unknown in most SRY-negative patients. We performed exome sequencing on 78 individuals with 46,XX TDSD/OTDSD of unknown genetic etiology and identified seven (8.97%) with heterozygous variants affecting the fourth zinc finger (ZF4) of Wilms' tumor 1 (WT1) (p.Ser478Thrfs*17, p.Pro481Leufs*15, p.Lys491Glu, p.Arg495Gln [x3], p.Arg495Gly). The variants were de novo in six families (P = 4.4 × 10-6), and the incidence of WT1 variants in 46,XX DSD is enriched compared to control populations (P < 1.8 × 10-4). The introduction of ZF4 mutants into a human granulosa cell line resulted in up-regulation of endogenous Sertoli cell transcripts and Wt1Arg495Gly/Arg495Gly XX mice display masculinization of the fetal gonads. The phenotype could be explained by the ability of the mutated proteins to physically interact with and sequester a key pro-ovary factor ß-CATENIN, which may lead to up-regulation of testis-specific pathway. Our data show that unlike previous association of WT1 and 46,XY DSD, ZF4 variants of WT1 are a relatively common cause of 46,XX TDSD/OTDSD. This expands the spectrum of phenotypes associated with WT1 variants and shows that the WT1 protein affecting ZF4 can function as a protestis factor in an XX chromosomal context.


Asunto(s)
Trastornos Testiculares del Desarrollo Sexual 46, XX/metabolismo , Testículo/metabolismo , Proteínas WT1/metabolismo , Trastornos Testiculares del Desarrollo Sexual 46, XX/genética , Trastornos Testiculares del Desarrollo Sexual 46, XX/patología , Animales , Preescolar , Femenino , Humanos , Lactante , Masculino , Ratones , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Testículo/crecimiento & desarrollo , Testículo/patología , Proteínas WT1/química , Proteínas WT1/genética , Dedos de Zinc , beta Catenina/genética , beta Catenina/metabolismo
10.
Curr Top Dev Biol ; 134: 223-252, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30999977

RESUMEN

The bipotential nature of cell types in the early developing gonad and the process of sex determination leading to either testis or ovary differentiation makes this an interesting system in which to study transcriptional regulation of gene expression and cell fate decisions. SOX9 is a transcription factor with multiple roles during development, including being a key player in mediating testis differentiation and therefore subsequent male development. Loss of Sox9 expression in both humans and mice results in XY female development, whereas its inappropriate activation in XX embryonic gonads can give male development. Multiple cases of Disorders of Sex Development in human patients or sex reversal in mice and other vertebrates can be explained by mutations affecting upstream regulators of Sox9 expression, such as the product of the Y chromosome gene Sry that triggers testis differentiation. Other cases are due to mutations in the Sox9 gene itself, including its own regulatory region. Indeed, rearrangements in and around the Sox9 genomic locus indicate the presence of multiple critical enhancers and the complex nature of its regulation. Here we summarize what is known about the role of Sox9 and its regulation during gonad development, including recently discovered critical enhancers. We also discuss higher order chromatin organization and how this might be involved. We end with some interesting future directions that have the potential to further enrich our understanding on the complex, multi-layered regulation controlling Sox9 expression in the gonads.


Asunto(s)
Trastornos del Desarrollo Sexual/genética , Regulación del Desarrollo de la Expresión Génica , Gónadas/fisiología , Mamíferos/genética , Factor de Transcripción SOX9/genética , Procesos de Determinación del Sexo/fisiología , Animales , Femenino , Humanos , Masculino
11.
Dev Biol ; 446(2): 168-179, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30594505

RESUMEN

Cis-regulatory elements are critical for the precise spatiotemporal regulation of genes during development. However, identifying functional regulatory sites that drive cell differentiation in vivo has been complicated by the high numbers of cells required for whole-genome epigenetic assays. Here, we identified putative regulatory elements during sex determination by performing ATAC-seq and ChIP-seq for H3K27ac in purified XX and XY gonadal supporting cells before and after sex determination in mice. We show that XX and XY supporting cells initiate sex determination with similar chromatin landscapes and acquire sex-specific regulatory elements as they commit to the male or female fate. To validate our approach, we identified a functional gonad-specific enhancer downstream of Bmp2, an ovary-promoting gene. This work increases our understanding of the complex regulatory network underlying mammalian sex determination and provides a powerful resource for identifying non-coding regulatory elements that could harbor mutations that lead to Disorders of Sexual Development.


Asunto(s)
Cromatina/genética , Gónadas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Procesos de Determinación del Sexo/genética , Acetilación , Animales , Cromatina/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Gónadas/citología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Histonas/genética , Histonas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos
12.
Science ; 360(6396): 1469-1473, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29903884

RESUMEN

Cell fate decisions require appropriate regulation of key genes. Sox9, a direct target of SRY, is pivotal in mammalian sex determination. In vivo high-throughput chromatin accessibility techniques, transgenic assays, and genome editing revealed several novel gonadal regulatory elements in the 2-megabase gene desert upstream of Sox9 Although others are redundant, enhancer 13 (Enh13), a 557-base pair element located 565 kilobases 5' from the transcriptional start site, is essential to initiate mouse testis development; its deletion results in XY females with Sox9 transcript levels equivalent to those in XX gonads. Our data are consistent with the time-sensitive activity of SRY and indicate a strict order of enhancer usage. Enh13 is conserved and embedded within a 32.5-kilobase region whose deletion in humans is associated with XY sex reversal, suggesting that it is also critical in humans.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Disgenesia Gonadal 46 XY/genética , Factor de Transcripción SOX9/genética , Procesos de Determinación del Sexo/genética , Proteína de la Región Y Determinante del Sexo/metabolismo , Testículo/embriología , Animales , Secuencia Conservada , Femenino , Humanos , Masculino , Ratones , Eliminación de Secuencia , Proteína de la Región Y Determinante del Sexo/genética , Sitio de Iniciación de la Transcripción
13.
PLoS Genet ; 13(2): e1006584, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28146551

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1006520.].

14.
PLoS Genet ; 13(1): e1006520, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28045957

RESUMEN

During mouse sex determination, transient expression of the Y-linked gene Sry up-regulates its direct target gene Sox9, via a 3.2 kb testis specific enhancer of Sox9 (TES), which includes a core 1.4 kb element, TESCO. SOX9 activity leads to differentiation of Sertoli cells, rather than granulosa cells from the bipotential supporting cell precursor lineage. Here, we present functional analysis of TES/TESCO, using CRISPR/Cas9 genome editing in mice. Deletion of TESCO or TES reduced Sox9 expression levels in XY fetal gonads to 60 or 45% respectively relative to wild type gonads, and reduced expression of the SOX9 target Amh. Although human patients heterozygous for null mutations in SOX9, which are assumed to have 50% of normal expression, often show XY female sex reversal, mice deleted for one copy of Sox9 do not. Consistent with this, we did not observe sex reversal in either TESCO-/- or TES-/- XY embryos or adult mice. However, embryos carrying both a conditional Sox9 null allele and the TES deletion developed ovotestes. Quantitative analysis of these revealed levels of 23% expression of Sox9 compared to wild type, and a significant increase in the expression of the granulosa cell marker Foxl2. This indicates that the threshold in mice where sex reversal begins to be seen is about half that of the ~50% levels predicted in humans. Our results demonstrate that TES/TESCO is a crucial enhancer regulating Sox9 expression in the gonad, but point to the existence of additional enhancers that act redundantly.


Asunto(s)
Elementos de Facilitación Genéticos , Factor de Transcripción SOX9/genética , Procesos de Determinación del Sexo/genética , Testículo/metabolismo , Alelos , Animales , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción SOX9/metabolismo , Testículo/crecimiento & desarrollo
15.
Dev Dyn ; 243(1): 132-44, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23821438

RESUMEN

The Drosophila Malpighian tubules (MpTs) serve as a functional equivalent of the mammalian renal tubules. The MpTs are composed of two pairs of epithelial tubes that bud from the midgut-hindgut boundary during embryogenesis. The MpT primordia grow, elongate and migrate through the body cavity to assume their final position and shape. The stereotypic pattern of MpT migration is regulated by multiple intrinsic and extrinsic signals, many of which are still obscure. In this work, we implicate the TALE-class homeoprotein Homothorax (Hth) in MpT patterning. We show that in the absence of Hth the tubules fail to rearrange and migrate. Hth plays both autonomous and nonautonomous roles in this developmental process. Within the tubules Hth is required for convergent extension and for defining distal versus proximal cell identities. The difference between distal and proximal cell identities seems to be required for proper formation of the leading loop. Outside the tubules, wide-range mesodermal expression of Hth is required for directing anterior migration. The nonautonomous effects of Hth on MpT migration can be partially attributed to its effects on homeotic determination along the anterior posterior axis of the embryo and to its effects on stellate cell (SC) incorporation into the MpT.


Asunto(s)
Proteínas de Drosophila/metabolismo , Túbulos Renales/embriología , Túbulos Renales/metabolismo , Animales , Drosophila , Proteínas de Drosophila/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mesodermo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Drug Resist Updat ; 15(4): 183-210, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22921318

RESUMEN

In the past 65 years, antifolates targeting folate metabolism played a pivotal role in drug treatment of malignant, microbial, parasitic and chronic inflammatory diseases. Drug discovery of novel antifolates with improved properties and superior activities remains an attractive strategy both in academia and in the pharmaceutical industry. Among novel antifolates are pemetrexed which primarily targets thymidylate synthase as well as pralatrexate which blocks dihydrofolate reductase, and displays enhanced transport and cellular retention properties. The present review describes the evolution and pharmacological activity of antifolates and prospects for the development of the next generation antifolates. Pre-clinical and clinical studies identified a plethora of mechanisms of antifolate resistance that are a primary hindrance to curative cancer chemotherapy; these are frequently associated with qualitative and/or quantitative alterations in influx and/or efflux transporters of antifolates and in folate-dependent enzymes. Current advances including for example the deciphering of the dominant folate transporter proton-coupled folate transporter (PCFT/SLC46A1) facilitated the synthesis of experimental antifolates aimed at selectively targeting solid tumor cells, which reside in an acidic microenvironment where PCFT supposedly functions optimally. Moreover, drugs that are structurally and mechanistically distinct from folates were conjugated to folic acid (e.g. Vintafolide/EC145, a folic acid desacetylvinblastine conjugate) to facilitate endocytosis via the folate receptor (FR) which is markedly overexpressed in various solid tumors. In an alternative approach, novel antifolates selectively targeting the FR but not other folate transporters are being developed (e.g. BGC 945). Hence, targeting mechanisms of antifolate-resistance could facilitate the development of rationally-based novel antifolates and strategies that overcome chemoresistance.


Asunto(s)
Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/farmacología , Neoplasias/tratamiento farmacológico , Animales , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Resistencia a Medicamentos , Ácido Fólico/metabolismo , Antagonistas del Ácido Fólico/uso terapéutico , Humanos , Neoplasias/metabolismo , Relación Estructura-Actividad
17.
J Biol Chem ; 285(44): 33602-13, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-20724482

RESUMEN

Folates are essential vitamins that play a key role as one-carbon donors in a spectrum of biosynthetic pathways including RNA and DNA synthesis. The proton-coupled folate transporter (PCFT/SLC46A1) mediates obligatory intestinal folate absorption. Loss-of-function mutations in PCFT result in hereditary folate malabsorption, an autosomal recessive disorder characterized by very low folate levels in the blood and cerebrospinal fluid. Hereditary folate malabsorption manifests within the first months after birth with anemia, immune deficiency, and neurological deficits. Here we studied the role of inducible trans-activators of PCFT gene expression. Bioinformatics identified three putative nuclear respiratory factor 1 (NRF-1) binding sites in the minimal promoter. The following evidence establish that PCFT is an NRF-1-responsive gene; electrophoretic mobility shift assay showed NRF-1 binding to native but not mutant NRF-1 sites, whereas antibody-mediated supershift analysis and chromatin immunoprecipitation revealed NRF-1 binding to its consensus sites within the PCFT promoter. Moreover, mutational inactivation of individual or all NRF-1 binding sites resulted in 40-60% decrease in luciferase reporter activity. Consistently, overexpression of NRF-1 or a constitutively active NRF-1 VP-16 construct resulted in increased reporter activity and PCFT mRNA levels. Conversely, introduction of a dominant-negative NRF-1 construct markedly repressed reporter activity and PCFT mRNA levels; likewise, introduction of NRF-1 siRNA duplexes to cells resulted in decreased PCFT transcript levels. Moreover, NRF-1 silencing down-regulated genes encoding for key folate transporters and enzymes in folate metabolism. These novel findings identify NRF-1 as a major inducible transcriptional regulator of PCFT gene expression. The implications of this linkage between folate transport and metabolism with mitochondria biogenesis and respiration are discussed.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas de Transporte de Membrana/metabolismo , Factor Nuclear 1 de Respiración/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Ácido Fólico/metabolismo , Células HeLa , Humanos , Cinética , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas , Transportador de Folato Acoplado a Protón , Interferencia de ARN , Homología de Secuencia de Aminoácido
18.
Biochem Biophys Res Commun ; 388(1): 79-85, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19643086

RESUMEN

The proton-coupled folate transporter (PCFT) is the dominant intestinal folate transporter, however, its promoter has yet to be revealed. Hence, we here cloned a 3.1kb fragment upstream to the first ATG of the human PCFT gene and generated sequential deletion constructs evaluated in luciferase reporter assay. This analysis mapped the minimal promoter to 157bp upstream to the first ATG. Crucial GC-box sites were identified within the minimal promoter and in its close vicinity which substantially contribute to promoter activity, as their disruption resulted in 94% loss of luciferase activity. We also identified upstream enhancer elements including YY1 and AP1 which, although distantly located, prominently transactivated the minimal promoter, as their inactivation resulted in 50% decrease in reporter activity. This is the first functional identification of the minimal PCFT promoter harboring crucial GC-box elements that markedly contribute to its transcriptional activation via putative interaction with distal YY1 and AP1 enhancer elements.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Elementos de Respuesta , Factor de Transcripción AP-1/metabolismo , Activación Transcripcional , Factor de Transcripción YY1/metabolismo , Secuencia de Bases , Análisis Mutacional de ADN , Ensayo de Cambio de Movilidad Electroforética , Células HeLa , Humanos , Iniciación de la Cadena Peptídica Traduccional/genética , Regiones Promotoras Genéticas , Transportador de Folato Acoplado a Protón , Análisis de Secuencia , Transcripción Genética
19.
Biochem Biophys Res Commun ; 376(4): 787-92, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18817749

RESUMEN

The proton-coupled folate transporter (PCFT/SLC46A1) displays optimal and prominent folate and antifolate transport activity at acidic pH in human carcinoma cells but poor activity in leukemia cells. Consistently herein, human leukemia cell lines expressed poor PCFT transcript levels, whereas various carcinoma cell lines showed substantial PCFT gene expression. We identified a CpG island with high density at nucleotides -200 through +100 and explored its role in PCFT promoter silencing. Leukemia cells with barely detectable PCFT transcripts consistently harbored 85-100% methylation of this CpG island, whereas no methylation was found in carcinoma cells. Treatment with 5-Aza-2'-deoxycytidine which induced demethylation but not with the histone deacetylase inhibitor trichostatin A, restored 50-fold PCFT expression only in leukemia cells. These findings constitute the first demonstration of the dominant epigenetic silencing of the PCFT gene in leukemia cells. The potential translational implications of the restoration of PCFT expression in chemotherapy of leukemia are discussed.


Asunto(s)
Metilación de ADN , Regulación Leucémica de la Expresión Génica , Silenciador del Gen , Leucemia/genética , Proteínas de Transporte de Membrana/genética , Azacitidina/análogos & derivados , Azacitidina/farmacología , Línea Celular Tumoral , Islas de CpG , Metilación de ADN/efectos de los fármacos , Decitabina , Expresión Génica , Humanos , Regiones Promotoras Genéticas , Transportador de Folato Acoplado a Protón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA