Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Virology ; 598: 110167, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39003988

RESUMEN

Swine influenza viruses (SIVs), including H1N1, H1N2, and H3N2, have spread throughout the global pig population. Potential pandemics are a concern with the recent sporadic cross-species transmission of SIVs to humans. We collected 1421 samples from Guangdong, Fujian, Henan, Yunnan and Jiangxi provinces during 2017-2018 and isolated 29 viruses. These included 21H1N1, 5H1N2, and 3H3N2 strains. Genome analysis showed that the domestic epidemic genotypes of H1N1 were mainly G4 and G5 reassortant EA swine H1N1. These genotypes have a clear epidemic advantage. Two strains were Clade 6B.1 pdm/09H1N1, suggesting a possible pig-to-human transmission route. Notably, three new H1N2 genotypes were identified using the genomic backbones of G4 or G5 viruses for recombination. The identification of various subtypes and genotypes highlight the complexity and diversity of SIVs in China and need for continuous monitoring of SIV evolution to assess the risks and prepare for potential influenza pandemics.


Asunto(s)
Evolución Molecular , Genotipo , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Filogenia , Enfermedades de los Porcinos , Animales , China/epidemiología , Porcinos , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/clasificación , Humanos , Genoma Viral , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Virus Reordenados/clasificación , Variación Genética , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N2 del Virus de la Influenza A/clasificación , Gripe Humana/virología , Gripe Humana/epidemiología , Salud Pública , Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación
2.
Int J Biol Macromol ; 274(Pt 2): 133401, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925184

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is one of the most devastating diseases affecting the pig industry globally. Due to the emergence of novel strains, no effective vaccines are available for prevention and control. Investigating the pathogenic mechanisms of PEDV may provide insights for creating clinical interventions. This study constructed and expressed eukaryotic expression vectors containing PEDV proteins (except NSP11) with a 3' HA tag in Vero cells. The subcellular localization of PEDV proteins was examined using endogenous protein antibodies to investigate their involvement in the viral life cycle, including endocytosis, intracellular trafficking, genome replication, energy metabolism, budding, and release. We systematically analyzed the potential roles of all PEDV viral proteins in the virus life cycle. We found that the endosome sorting complex required for transport (ESCRT) machinery may be involved in the replication and budding processes of PEDV. Our study provides insight into the molecular mechanisms underlying PEDV infection. IMPORTANCE: The global swine industry has suffered immense losses due to the spread of PEDV. Currently, there are no effective vaccines available for clinical protection. Exploring the pathogenic mechanisms of PEDV may provide valuable insights for clinical interventions. This study investigated the involvement of viral proteins in various stages of the PEDV lifecycle in the state of viral infection and identified several previously unreported interactions between viral and host proteins. These findings contribute to a better understanding of the pathogenic mechanisms underlying PEDV infection and may serve as a basis for further research and development of therapeutic strategies.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Proteínas Virales , Replicación Viral , Virus de la Diarrea Epidémica Porcina/fisiología , Animales , Chlorocebus aethiops , Células Vero , Porcinos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Infecciones por Coronavirus/virología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/metabolismo , Endocitosis
3.
Front Vet Sci ; 11: 1417348, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933700

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen that targets pig intestines to cause disease. It is globally widespread and causes huge economic losses to the pig industry. PEDV N protein is the protein that constitutes the core of PEDV virus particles, and most of it is expressed in the cytoplasm, and a small part can also be expressed in the nucleus. However, the role of related proteins in host nucleotide metabolic pathways in regulating PEDV replication have not been fully elucidated. In this study, PEDV-N-labeled antibodies were co-immunoprecipitated and combined with LC-MS to screen for host proteins that interact with N proteins. Bioinformatics analyses showed that the selected host proteins were mainly enriched in metabolic pathways. Moreover, co-immunoprecipitation and confocal microscopy confirmed that the second-largest subunit of RNA polymerase II (RPB2) and uridine phosphorylase 1 (UPP1) interacted with the N protein. RPB2 is the main subunit of RNA polymerase II and plays an important role in eukaryotic transcription. UPP1 is an enzyme that catalyzes reversible phosphorylation of uridine to uracil and ribo-1-phosphate to promote catabolism and bio anabolism. RPB2 overexpression significantly promoted viral replication, whereas UPP1 overexpression significantly inhibited viral replication. Studies on interactions between the PEDV N and host proteins are helpful in elucidating the pathogenesis and immune escape mechanism of PEDV.

4.
J Biol Chem ; 300(7): 107472, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38879005

RESUMEN

African swine fever virus (ASFV) causes severe disease in domestic pigs and wild boars, seriously threatening the development of the global pig industry. Type I interferon (IFN-I) is an important component of innate immunity, inducing the transcription and expression of antiviral cytokines by activating Janus-activated kinase-signal transducer and activator of transcription (STAT). However, the underlying molecular mechanisms by which ASFV antagonizes IFN-I signaling have not been fully elucidated. Therefore, using coimmunoprecipitation, confocal microscopy, and dual luciferase reporter assay methods, we investigated these mechanisms and identified a novel ASFV immunosuppressive protein, pB475L, which interacts with the C-terminal domain of STAT2. Consequently, pB475L inhibited IFN-I signaling by inhibiting STAT1 and STAT2 heterodimerization and nuclear translocation. Furthermore, we constructed an ASFV-B475L7PM mutant strain by homologous recombination, finding that ASFV-B475L7PM attenuated the inhibitory effects on IFN-I signaling compared to ASFV-WT. In summary, this study reveals a new mechanism by which ASFV impairs host innate immunity.


Asunto(s)
Virus de la Fiebre Porcina Africana , Inmunidad Innata , Interferón Tipo I , Factor de Transcripción STAT2 , Transducción de Señal , Proteínas Virales , Animales , Humanos , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/metabolismo , Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/genética , Células HEK293 , Evasión Inmune , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT2/metabolismo , Factor de Transcripción STAT2/genética , Porcinos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/inmunología
5.
Virol Sin ; 39(3): 469-477, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38789040

RESUMEN

Virus replication relies on complex interactions between viral proteins. In the case of African swine fever virus (ASFV), only a few such interactions have been identified so far. In this study, we demonstrate that ASFV protein p72 interacts with p11.5 using co-immunoprecipitation and liquid chromatography-mass spectrometry (LC-MS). It was found that protein p72 interacts specifically with p11.5 â€‹at sites amino acids (aa) 1-216 of p72 and aa 1-68 of p11.5. To assess the importance of p11.5 in ASFV infection, we developed a recombinant virus (ASFVGZΔA137R) by deleting the A137R gene from the ASFVGZ genome. Compared with ASFVGZ, the infectious progeny virus titers of ASFVGZΔA137R were reduced by approximately 1.0 logs. In addition, we demonstrated that the growth defect was partially attributable to a higher genome copies-to-infectious virus titer ratios produced in ASFVGZΔA137R-infected MA104 â€‹cells than in those infected with ASFVGZ. This finding suggests that MA104 â€‹cells infected with ASFVGZΔA137R may generate larger quantities of noninfectious particles. Importantly, we found that p11.5 did not affect virus-cell binding or endocytosis. Collectively, we show for the first time the interaction between ASFV p72 and p11.5. Our results effectively provide the relevant information of the p11.5 protein. These results extend our understanding of complex interactions between viral proteins, paving the way for further studies of the potential mechanisms and pathogenesis of ASFV infection.


Asunto(s)
Virus de la Fiebre Porcina Africana , Proteínas Virales , Replicación Viral , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/fisiología , Animales , Porcinos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Chlorocebus aethiops , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/metabolismo , Línea Celular , Unión Proteica , Cromatografía Liquida , Células Vero , Espectrometría de Masas
6.
Bull Entomol Res ; 114(2): 271-280, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38623047

RESUMEN

Genes involved in melanin production directly impact insect pigmentation and can affect diverse physiology and behaviours. The role these genes have on sex behaviour, however, is unclear. In the present study, the crucial melanin pigment gene black was functionally characterised in an urban pest, the German cockroach, Blattella germanica. RNAi knockdown of B. germanica black (Bgblack) had no effect on survival, but did result in black pigmentation of the thoraxes, abdomens, heads, wings, legs, antennae, and cerci due to cuticular accumulation of melanin. Sex-specific variation in the pigmentation pattern was apparent, with females exhibiting darker coloration on the abdomen and thorax than males. Bgblack knockdown also resulted in wing deformation and negatively impacted the contact sex pheromone-based courtship behaviour of males. This study provides evidence for black function in multiple aspects of B. germanica biology and opens new avenues of exploration for novel pest control strategies.


Asunto(s)
Blattellidae , Melaninas , Pigmentación , Animales , Blattellidae/genética , Blattellidae/fisiología , Masculino , Femenino , Pigmentación/genética , Melaninas/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Conducta Sexual Animal , Interferencia de ARN
7.
Front Microbiol ; 15: 1380578, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577683

RESUMEN

Introduction: Porcine epidemic diarrhea (PED) is an acute, highly contagious, and high-mortality enterophilic infectious disease caused by the porcine epidemic diarrhea virus (PEDV). PEDV is globally endemic and causes substantial economic losses in the swine industry. The PEDV E protein is the smallest structural protein with high expression levels that interacts with the M protein and participates in virus assembly. However, how the host proteins interact with E proteins in PEDV replication remains unknown. Methods: We identified host proteins that interact with the PEDV E protein using a combination of PEDV E protein-labeled antibody co-immunoprecipitation and tandem liquid-chromatography mass-spectroscopy (LC-MS/MS). Results: Bioinformatical analysis showed that in eukaryotes, ribosome biogenesis, RNA transport, and amino acid biosynthesis represent the three main pathways that are associated with the E protein. The interaction between the E protein and isocitrate dehydrogenase [NAD] ß-subunit (NAD-IDH-ß), DNA-directed RNA polymerase II subunit RPB9, and mRNA-associated protein MRNP 41 was validated using co-immunoprecipitation and confocal assays. NAD-IDH-ß overexpression significantly inhibited viral replication. Discussion: The antiviral effect of NAD-IDH-ß suggesting that the E protein may regulate host metabolism by interacting with NAD-IDH-ß, thereby reducing the available energy for viral replication. Elucidating the interaction between the PEDV E protein and host proteins may clarify its role in viral replication. These results provide a theoretical basis for the study of PEDV infection mechanism and antiviral targets.

8.
Arch Insect Biochem Physiol ; 115(4): e22114, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38659314

RESUMEN

The insect cuticle plays a key role in maintaining the insect's physiological function and behavior. Herein, the yellow-y protein is required to produce black melanin, and is expressed in a pattern that correlates with the distribution of this pigment. However, yellow-y can also have other functions, for instance, in insect behavior, but not much is known. In this study, we have studied the yellow-y gene in one important model and pest species, namely the German cockroach (Blattella germanica), which is to our knowledge the first time reported. In essence, we identified the yellow-y gene (BgY-y) and characterized its function by using RNA interference (RNAi). Silencing of BgY-y gene led to different developmental abnormalities (body weight and wings) in both genders. Specifically, there was an abundant decrease in melanin, turning the body color in pale yellow and the cuticle softer and more transparent. Interestingly, we also observed that the knockdown of BgY-y impaired the male cockroaches to display a weaker response to female-emitted contact sex pheromones, and also that the oviposition ability was weakened in the RNAi females. This study comprehensively analyzed the biological functions of the yellow-y gene in German cockroaches from the perspectives of development, body color, courtship behavior and oviposition, and as a consequence, this may opens new avenues to explore it as a novel pest control gene.


Asunto(s)
Blattellidae , Proteínas de Insectos , Oviposición , Pigmentación , Interferencia de ARN , Animales , Blattellidae/genética , Blattellidae/fisiología , Femenino , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Pigmentación/genética , Cortejo , Melaninas/metabolismo , Conducta Sexual Animal
9.
Sci Total Environ ; 926: 171286, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38428617

RESUMEN

Vacuolar-type (H+)-ATPase (vATPase) is a conserved multi-subunit eukaryotic enzyme composed of 14 subunits that form a functional complex consisting of an ATP-hydrolytic domain (V1) and a proton-translocation domain (V0). ATP hydrolysis and subsequent H+ translocation rely heavily on a fully assembled V1/V0 complex. Since vATPase is crucial for insect survival, it is a viable molecular target for pest control. However, detailed functional analyses of the 14 subunits and their suitability for pest control have not been fully explored in a single insect species. In this study, we identified 22 vATPase subunit transcripts that correspond to 13 subunits (A1, A2, B, C, D, E, F, G, H, a1, a2, c and d) in the white-backed planthopper (WBPH), Sogatella furcifera, a major hemipteran pest of rice. RNAi screens using microinjection and spray-based methods revealed that the SfVHA-F, SfVHA-a2 and SfVHA-c2 subunits are critical. Furthermore, star polymer (SPc) nanoparticles were utilized to conduct spray-induced and nanoparticle-delivered gene silencing (SI-NDGS) to evaluate the pest control efficacy of RNAi targeting the SfVHA-F, SfVHA-a2 and SfVHA-c2 transcripts. Target mRNA levels and vATPase enzymatic activity were both reduced. Honeydew excreta was likewise reduced in WBPH treated with dsRNAs targeting SfVHA-F, SfVHA-a2 and SfVHA-c2. To assess the environmental safety of the nanoparticle-wrapped dsRNAs, Cyrtorhinus lividipennis Reuter, a major natural enemy of planthoppers, was also sprayed with dsRNAs targeting SfVHA-F, SfVHA-a2 and SfVHA-c2. Post-spray effects of dsSfVHA-a2 and dsSfVHA-c2 on C. lividipennis were innocuous. This study identifies SfVHA-a2 and SfVHA-c2 as promising targets for biorational control of WBPH and lays the foundation for developing environment-friendly RNAi biopesticides.


Asunto(s)
Hemípteros , Heterópteros , Oryza , Plaguicidas , Animales , Oryza/genética , Interferencia de ARN , Medición de Riesgo , Adenosina Trifosfato
10.
Int J Biol Macromol ; 266(Pt 1): 130939, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493816

RESUMEN

African swine fever (ASF) is an acute, febrile, highly contagious infection of pigs caused by the African swine fever virus (ASFV). The purpose of this study is to understand the molecular mechanism of ASFV infection and evaluate the effect of DCA on MAPK pathway, so as to provide scientific basis for the development of new antiviral drugs. The transcriptome analysis found that ASFV infection up-regulated the IL-17 and MAPK signaling pathways to facilitate viral replication. Metabolome analysis showed that DCA levels were up-regulated after ASFV infection, and that exogenous DCA could inhibit activation of the MAPK pathway by ASFV infection and thus inhibit viral replication. Dual-luciferase reporter assays were used to screen the genes of ASFV and revealed that I73R could significantly up-regulate the transcription level of AP-1 transcription factor in the MAPK pathway. Confocal microscopy demonstrated that I73R could promote AP-1 entry into the nucleus, and that DCA could inhibit the I73R-mediated nuclear entry of AP-1, inhibiting MAPK pathway, and I73R interacts with AP-1. These results indicated that DCA can inhibit ASFV-mediated activation of the MAPK pathway, thus inhibiting ASFV replication. This study provides a theoretical basis for research on ASF pathogenesis and for antiviral drug development.


Asunto(s)
Virus de la Fiebre Porcina Africana , Ácido Desoxicólico , Sistema de Señalización de MAP Quinasas , Replicación Viral , Replicación Viral/efectos de los fármacos , Animales , Virus de la Fiebre Porcina Africana/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Porcinos , Ácido Desoxicólico/farmacología , Factor de Transcripción AP-1/metabolismo , Chlorocebus aethiops , Células Vero , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/metabolismo , Antivirales/farmacología
11.
PLoS Pathog ; 20(3): e1012103, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38489378

RESUMEN

Alphacoronaviruses are the primary coronaviruses responsible for causing severe economic losses in the pig industry with the potential to cause human outbreaks. Currently, extensive studies have reported the essential role of endosomal sorting and transport complexes (ESCRT) in the life cycle of enveloped viruses. However, very little information is available about which ESCRT components are crucial for alphacoronaviruses infection. By using RNA interference in combination with Co-immunoprecipitation, as well as fluorescence and electron microscopy approaches, we have dissected the role of ALIX and TSG101 for two porcine alphacoronavirus cellular entry and replication. Results show that infection by two porcine alphacoronaviruses, including porcine epidemic diarrhea virus (PEDV) and porcine enteric alphacoronavirus (PEAV), is dramatically decreased in ALIX- or TSG101-depleted cells. Furthermore, PEDV entry significantly increases the interaction of ALIX with caveolin-1 (CAV1) and RAB7, which are crucial for viral endocytosis and lysosomal transport, however, does not require TSG101. Interestingly, PEAV not only relies on ALIX to regulate viral endocytosis and lysosomal transport, but also requires TSG101 to regulate macropinocytosis. Besides, ALIX and TSG101 are recruited to the replication sites of PEDV and PEAV where they become localized within the endoplasmic reticulum and virus-induced double-membrane vesicles. PEDV and PEAV replication were significantly inhibited by depletion of ALIX and TSG101 in Vero cells or primary jejunal epithelial cells, indicating that ALIX and TSG101 are crucial for PEDV and PEAV replication. Collectively, these data highlight the dual role of ALIX and TSG101 in the entry and replication of two porcine alphacoronaviruses. Thus, ESCRT proteins could serve as therapeutic targets against two porcine alphacoronaviruses infection.


Asunto(s)
Alphacoronavirus , Proteínas de Unión al Calcio , Virus de la Diarrea Epidémica Porcina , Animales , Alphacoronavirus/metabolismo , Línea Celular , Chlorocebus aethiops , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Células Epiteliales/metabolismo , Virus de la Diarrea Epidémica Porcina/metabolismo , Porcinos , Células Vero , Replicación Viral , Proteínas de Unión al Calcio/metabolismo
12.
Front Microbiol ; 15: 1370417, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481793

RESUMEN

Introduction: African swine fever virus (ASFV) is a highly contagious virus that spreads rapidly and has a mortality rate of up to 100% in domestic pigs, leading to significant economic losses in the pig industry. The major capsid protein p72 of ASFV plays a critical role in viral invasion and immune evasion. Methods: In this study, we used yeast two-hybrid screening to identify host proteins interacting with p72 in porcine alveolar macrophages (PAMs) and verified these proteins using confocal microscopy and immunoprecipitation techniques. Results and Discussion: We validated 13 proteins that interact with p72, including CD63, B2M, YTHDF2, FTH1, SHFL, CDK5RAP3, VIM, PELO, TIMP2, PHYH, C1QC, CMAS, and ERCC1. Enrichment analysis and protein-protein interaction network analysis of these interacting proteins revealed their involvement in virus attachment, invasion, replication, assembly, and immune regulation. These findings provide new insights into the function of p72 and valuable information for future research on the interaction between ASFV and host proteins.

13.
J Agric Food Chem ; 72(2): 1007-1016, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38166405

RESUMEN

RNA interference (RNAi) is a widespread post-transcriptional silencing mechanism that targets homologous mRNA sequences for specific degradation. An RNAi-based pest management strategy is target-specific and considered a sustainable biopesticide. However, the specific genes targeted and the efficiency of the delivery methods can vary widely across species. In this study, a spray-induced and nanocarrier-delivered gene silencing (SI-NDGS) system that incorporated gene-specific dsRNAs targeting conserved genes was used to evaluate phenotypic effects in white-backed planthopper (WBPH). At 2 days postspraying, transcript levels for all target genes were significantly reduced and knockdown of two gene orthologs, hsc70-3 and PP-α, resulted in an elevated mortality (>60%) and impaired ecdysis. These results highlight the utility of the SI-NDGS system for identifying genes involved in WBPH growth and development that could be potentially exploitable as high mortality target genes to develop an alternative method for WBPH control.


Asunto(s)
Genes Letales , Hemípteros , Animales , Interferencia de ARN , Silenciador del Gen , Hemípteros/genética
14.
Vet Microbiol ; 290: 109988, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244395

RESUMEN

African swine fever virus (ASFV) has caused enormous economic losses since its first reported detection, and there is still no effective vaccines or drug treatment. During infection, viruses may employ various strategies, such as regulating the host endoplasmic reticulum stress/unfolded protein response or the formation of stress granules (SGs), to form an optimal environment for virus replication. However, how ASFV infection regulates host endoplasmic reticulum stress, eIF2α-regulated protein synthesis, and the formation of SGs remains unclear. Here, we evaluated the activation of ER stress and its three downstream axes during ASFV infection and identified a powerful dephosphorylation of eIF2α by ASFV ex vivo. This strong dephosphorylation property could maintain the efficiency of eIF2α-mediated de novo global protein synthesis, thus ensuring efficient viral protein synthesis at early stage. In addition, the powerful dephosphorylation of eIF2α by ASFV upon infection could also inhibit the formation of SGs induced by sodium arsenite. In addition, a specific eIF2α dephosphorylation inhibitor, salubrinal, could partially counteract ASFV-mediated eIF2α dephosphorylation and inhibit viral replication. Our results provide new insights into the areas of ASFV`s escape from host immunity and hijacking of the host protein translation system.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Animales , Porcinos , Virus de la Fiebre Porcina Africana/genética , Gránulos de Estrés , Replicación Viral , Biosíntesis de Proteínas
15.
Vet Microbiol ; 290: 110002, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295489

RESUMEN

African swine fever has caused substantial economic losses to China`s pig industry in recent years. Currently, the highly pathogenic African swine fever virus strain of genotype II is predominantly circulating in China, accompanied by a series of emerging isolates displaying unique genetic variations. The pathogenicity of these emerging strains is still unclear. Recently, a novel ASFV strain with a distinguishable three-large-fragment gene deletion was obtained from the field specimens, and its in vivo pathogenicity and transmission were evaluated in this study. The animal experiment involved inoculating a high dose of YNFN202103 and comparing its effects with those of the highly pathogenic strain GZ201801_2. Results showed that pigs infected by YNFN202103 exhibited significantly prolonged onset and survival time, lower viremia levels, and less severe histopathological lesions compared to GZ201801_2. These findings contributed valuable insights into the pathogenicity and transmission of ASFV and its prevention and eradication strategies in practical settings.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Virulencia/genética , Eliminación de Gen , China , Enfermedades de los Porcinos/genética
16.
Virology ; 589: 109923, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977082

RESUMEN

Porcine epidemic diarrhea (PED) is an acute, severe, highly contagious disease. Porcine epidemic diarrhea virus (PEDV) strains are prone to mutation, and the immune response induced by traditional vaccines may not be strong enough to be effective against the virus. Therefore, there is an urgent need to develop novel anti-PEDV drugs. This study aimed to explore the therapeutic effects of quercetin in PEDV infections in vitro (Vero cells) and in vivo (suckling piglets). Using transmission electron microscopy and laser confocal microscopy, we found that PEDV infection promotes the accumulation of lipid droplets (LDs). In vitro, studies showed that quercetin inhibits LD accumulation by down-regulating NF-κB signaling and IL-1ß, IL-8, and IL-6 levels, thereby inhibiting viral replication. In vivo, studies in pigs demonstrated that quercetin can effectively relieve the clinical symptoms and intestinal injury caused by PEDV. Collectively, our findings suggest that quercetin inhibits PEDV replication both in vivo and in vitro, which provides a new direction for the development of PED antiviral drugs.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Chlorocebus aethiops , Animales , Porcinos , Quercetina/farmacología , Quercetina/uso terapéutico , Células Vero , Virus de la Diarrea Epidémica Porcina/fisiología , Replicación Viral , Antivirales/farmacología , Antivirales/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/veterinaria , Diarrea
17.
J Virol ; 97(12): e0011523, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38038431

RESUMEN

IMPORTANCE: Porcine epidemic diarrhea, characterized by vomiting, dehydration, and diarrhea, is an acute and highly contagious enteric disease caused by porcine epidemic diarrhea virus (PEDV) in neonatal piglets. This disease has caused large economic losses to the porcine industry worldwide. Thus, identifying the host factors involved in PEDV infection is important to develop novel strategies to control PEDV transmission. This study shows that PEDV infection upregulates karyopherin α 2 (KPNA2) expression in Vero and intestinal epithelial (IEC) cells. KPNA2 binds to and degrades the PEDV E protein via autophagy to suppress PEDV replication. These results suggest that KPNA2 plays an antiviral role against PEDV. Specifically, knockdown of endogenous KPNA2 enhances PEDV replication, whereas its overexpression inhibits PEDV replication. Our data provide novel KPNA2-mediated viral restriction mechanisms in which KPNA2 suppresses PEDV replication by targeting and degrading the viral E protein through autophagy. These mechanisms can be targeted in future studies to develop novel strategies to control PEDV infection.


Asunto(s)
Autofagia , Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Animales , Chlorocebus aethiops , Infecciones por Coronavirus/veterinaria , Diarrea/veterinaria , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos , Enfermedades de los Porcinos , Células Vero , Proteínas del Envoltorio Viral , Proteínas Virales , Replicación Viral
18.
Insect Sci ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919237

RESUMEN

Although CRISPR/Cas9 has been widely used in insect gene editing, the need for the microinjection of preblastoderm embryos can preclude the technique being used in insect species with eggs that are small, have hard shells, and/or are difficult to collect and maintain outside of their normal environment. Such is the case with Sogatella furcifera, the white-backed planthopper (WBPH), a significant pest of Oryza sativa (rice) that oviposits inside rice stems. Egg extraction from the stem runs the risk of mechanical damage and hatching is heavily influenced by the micro-environment of the rice stem. To bypass these issues, we targeted embryos prior to oviposition via direct parental (DIPA)-CRISPR, in which Cas9 and single-guide RNAs (sgRNAs) for the WBPH eye pigment gene tryptophan 2,3-dioxygenase were injected into the hemocoel of adult females. Females at varying numbers of days posteclosion were evaluated to determine at what stage their oocyte might be most capable of taking up the gene-editing components. An evaluation of the offspring indicated that the highest G0 gene-edited efficacy (56.7%) occurred in females injected 2 d posteclosion, and that those mutations were heritably transmitted to the G1 generation. This study demonstrates the potential utility of DIPA-CRISPR for future gene-editing studies in non-model insect species and can facilitate the development of novel pest management applications.

19.
Sensors (Basel) ; 23(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37960379

RESUMEN

Batch process monitoring datasets usually contain missing data, which decreases the performance of data-driven modeling for fault identification and optimal control. Many methods have been proposed to impute missing data; however, they do not fulfill the need for data quality, especially in sensor datasets with different types of missing data. We propose a hybrid missing data imputation method for batch process monitoring datasets with multi-type missing data. In this method, the missing data is first classified into five categories based on the continuous missing duration and the number of variables missing simultaneously. Then, different categories of missing data are step-by-step imputed considering their unique characteristics. A combination of three single-dimensional interpolation models is employed to impute transient isolated missing values. An iterative imputation based on a multivariate regression model is designed for imputing long-term missing variables, and a combination model based on single-dimensional interpolation and multivariate regression is proposed for imputing short-term missing variables. The Long Short-Term Memory (LSTM) model is utilized to impute both short-term and long-term missing samples. Finally, a series of experiments for different categories of missing data were conducted based on a real-world batch process monitoring dataset. The results demonstrate that the proposed method achieves higher imputation accuracy than other comparative methods.

20.
Virus Res ; 338: 199238, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37827302

RESUMEN

African swine fever (ASF) is a virulent infectious diseases of pigs caused by the African swine fever virus (ASFV) that can spread widely and cause high fatality rates. Currently, there is no effective way to treat the disease, and there is no effective vaccine to prevent it. Rhein, an anthraquinone compound extracted from many traditional Chinese medicines, exhibits anti-inflammatory, anti-tumor, and anti-viral activities. However, the anti-viral effects of rhein on ASFV remain unclear. Therefore, this study aimed to investigate the anti-ASFV activity of rhein in porcine alveolar macrophages (PAMs) and the underlying mechanisms. In this study, we confirmed that rhein inhibits ASFV replication significantly in a dose-dependent manner in vitro. Moreover, rhein could alter the susceptibility of PAMs to ASFV and promoted the production of superoxide in the mitochondria, which induced the loss of mitochondrial membrane potential, leading to the activation of caspase-9, caspase-3, and apoptosis. Mito-TEMPO, a mitochondria-targeted antioxidant, blocked rhein-induced mitochondrial superoxide generation and loss of mitochondrial membrane potential, prevented caspase-9 and caspase-3 activation, alleviated apoptosis, and suppressed the anti-ASFV activity of rhein. Altogether, our results suggested that rhein could play an anti-ASFV role by inducing apoptosis through the activation of the caspase-dependent mitochondrial apoptotic pathway and may provide a novel compound for developing anti-ASFV drugs.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/fisiología , Caspasa 3/metabolismo , Caspasa 3/farmacología , Caspasa 9/genética , Superóxidos/metabolismo , Superóxidos/farmacología , Antraquinonas/farmacología , Antraquinonas/metabolismo , Antivirales/farmacología , Antivirales/metabolismo , Apoptosis , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...