Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Funct Plant Biol ; 512024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38743838

RESUMEN

Soil salinisation is an important abiotic stress faced in grape cultivating, leading to weakened plant vigour and reduced fruit quality. Melatonin as a novel hormone has shown positive exogenous application value. Therefore, this study used wine grape (Vitis vinifera ) 'Pinot Noir' as a test material to investigate the changes of foliar spraying with different concentrations of melatonin on the physiology and fruit quality of wine grapes in a field under simulated salt stress (200mmolL-1 NaCl). The results showed that foliar spraying of melatonin significantly increased the intercellular CO2 concentration, maximum photochemical quantum yield of PSII, relative chlorophyll and ascorbic acid content of the leaves, as well as the single spike weight, 100-grain weight, transverse and longitudinal diameters, malic acid, α-amino nitrogen and ammonia content of fruits, and decreased the initial fluorescence value of leaves, ascorbate peroxidase activity, glutathione content, fruit transverse to longitudinal ratio and tartaric acid content of plants under salt stress. Results of the comprehensive evaluation of the affiliation function indicated that 100µmolL-1 melatonin treatment had the best effect on reducing salt stress in grapes. In summary, melatonin application could enhance the salt tolerance of grapes by improving the photosynthetic capacity of grape plants under salt stress and promoting fruit development and quality formation, and these results provide new insights into the involvement of melatonin in the improvement of salt tolerance in crop, as well as some theoretical basis for the development and industrialisation of stress-resistant cultivation techniques for wine grapes.


Asunto(s)
Frutas , Melatonina , Fotosíntesis , Hojas de la Planta , Estrés Salino , Vitis , Vitis/efectos de los fármacos , Vitis/fisiología , Vitis/crecimiento & desarrollo , Melatonina/farmacología , Melatonina/administración & dosificación , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Estrés Salino/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Clorofila/metabolismo , Ácido Ascórbico/farmacología , Vino
2.
Physiol Plant ; 175(2): e13896, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36951039

RESUMEN

Salt stress is a dominant environmental factor that restricts the growth and yield of crops. Nitrogen is an essential mineral element for plants, regulates various physiological and biochemical processes, and has been reported to enhance salt tolerance in plants. However, the crosstalk between salt and nitrogen in grapes is not well understood. In this study, we found that nitrogen supplementation (0.01 and 0.1 mol L-1 NH4 NO3 ) significantly increased the accumulation of proline, chlorophyll, Na+ , NH4 + , and NO3 - , while it reduced the malondialdehyde content and inhibited photosynthetic performance under salt stress conditions (200 mmol L-1 NaCl). Further transcriptome and metabolome analyses showed that a total of 4890 differentially expressed genes (DEGs) and 753 differently accumulated metabolites (DAMs) were identified. Joint omics results revealed that plant hormone signal transduction pathway connected the DEGs and DAMs. In-depth analysis revealed that nitrogen supplementation increased the levels of endogenous abscisic acid, salicylic acid, and jasmonic acid by inducing the expression of 11, 4, and 13 genes related to their respective biosynthesis pathway. In contrast, endogenous indoleacetic acid content was significantly reduced due to the remarkable regulation of seven genes of its biosynthetic pathway. The modulation in hormone contents subsequently activated the differential expression of 13, 10, 12, and 29 genes of the respective downstream hormone signaling transduction pathways. Overall, all results indicate that moderate nitrogen supplementation could improve salt tolerance by regulating grape physiology and endogenous hormone homeostasis, as well as the expression of key genes in signaling pathways, which provides new insights into the interactions between mineral elements and salt stress.


Asunto(s)
Hormonas , Tolerancia a la Sal , Vitis , Regulación de la Expresión Génica de las Plantas , Hormonas/metabolismo , Nitrógeno/metabolismo , Tolerancia a la Sal/genética , Plantones/metabolismo , Vitis/metabolismo
3.
BMC Plant Biol ; 22(1): 528, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376811

RESUMEN

BACKGROUND: Soil salinization and alkalization are widespread environmental problems that limit grapevine (Vitis vinifera L.) growth and yield. However, little is known about the response of grapevine to alkali stress. This study investigated the differences in physiological characteristics, chloroplast structure, transcriptome, and metabolome in grapevine plants under salt stress and alkali stress. RESULTS: We found that grapevine plants under salt stress and alkali stress showed leaf chlorosis, a decline in photosynthetic capacity, a decrease in chlorophyll content and Rubisco activity, an imbalance of Na+ and K+, and damaged chloroplast ultrastructure. Fv/Fm decreased under salt stress and alkali stress. NPQ increased under salt stress whereas decreased under alkali stress. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed the differentially expressed genes (DEGs) induced by salt stress and alkali stress were involved in different biological processes and have varied molecular functions. The expression of stress genes involved in the ABA and MAPK signaling pathways was markedly altered by salt stress and alkali stress. The genes encoding ion transporter (AKT1, HKT1, NHX1, NHX2, TPC1A, TPC1B) were up-regulated under salt stress and alkali stress. Down-regulation in the expression of numerous genes in the 'Porphyrin and chlorophyll metabolism', 'Photosynthesis-antenna proteins', and 'Photosynthesis' pathways were observed under alkali stress. Many genes in the 'Carbon fixation in photosynthetic organisms' pathway in salt stress and alkali stress were down-regulated. Metabolome showed that 431 and 378 differentially accumulated metabolites (DAMs) were identified in salt stress and alkali stress, respectively. L-Glutamic acid and 5-Aminolevulinate involved in chlorophyll synthesis decreased under salt stress and alkali stress. The abundance of 19 DAMs under salt stress related to photosynthesis decreased. The abundance of 16 organic acids in salt stress and 22 in alkali stress increased respectively. CONCLUSIONS: Our findings suggested that alkali stress had more adverse effects on grapevine leaves, chloroplast structure, ion balance, and photosynthesis than salt stress. Transcriptional and metabolic profiling showed that there were significant differences in the effects of salt stress and alkali stress on the expression of key genes and the abundance of pivotal metabolites in grapevine plants.


Asunto(s)
Vitis , Vitis/metabolismo , Regulación de la Expresión Génica de las Plantas , Álcalis/metabolismo , Proteínas de Plantas/genética , Perfilación de la Expresión Génica , Estrés Salino/genética , Transcriptoma , Clorofila/metabolismo
4.
Physiol Mol Biol Plants ; 28(6): 1147-1158, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35910436

RESUMEN

In higher plants, light capture of chlorophyll a/b binding protein (Lhc) plays a crucial role in the plant's response to adverse environment. So far, the family has not been systematically identified in grapes. In this study, 20 VvLhcs were identified in the grape genome, which were distributed in 13 of 19 grape chromosomes and divided into 7 developing branches. The results of gene duplication analysis showed that 6 VvLhcs formed fragment duplication events, while there was no tandem duplication in VvLhcs. Exon-intron structure analysis showed that they had a wide number of exons. Protein conserved motif analysis showed that VvLhcs contained more similar motif structures in the same phylogenetic branch. The cis-acting elements in the VvLhcs promoter region mainly respond to light, plant hormones and abiotic stresses. In addition, qRT-PCR results showed that different proportions of salt stress and red-blue light affected the expression of VvLhcs and the expression patterns of genes in different grape varieties were different. The results for further study on different grape varieties in different combinations of red and blue light of the Lhc provide a theoretical basis. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01204-5.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA