Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 384(6698): eadh7688, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781356

RESUMEN

RNA splicing is highly prevalent in the brain and has strong links to neuropsychiatric disorders; yet, the role of cell type-specific splicing and transcript-isoform diversity during human brain development has not been systematically investigated. In this work, we leveraged single-molecule long-read sequencing to deeply profile the full-length transcriptome of the germinal zone and cortical plate regions of the developing human neocortex at tissue and single-cell resolution. We identified 214,516 distinct isoforms, of which 72.6% were novel (not previously annotated in Gencode version 33), and uncovered a substantial contribution of transcript-isoform diversity-regulated by RNA binding proteins-in defining cellular identity in the developing neocortex. We leveraged this comprehensive isoform-centric gene annotation to reprioritize thousands of rare de novo risk variants and elucidate genetic risk mechanisms for neuropsychiatric disorders.


Asunto(s)
Trastornos Mentales , Neocórtex , Neurogénesis , Isoformas de Proteínas , Empalme del ARN , Análisis de la Célula Individual , Transcriptoma , Humanos , Empalme Alternativo , Predisposición Genética a la Enfermedad , Trastornos Mentales/genética , Anotación de Secuencia Molecular , Neocórtex/metabolismo , Neocórtex/embriología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Neurogénesis/genética
2.
bioRxiv ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36993726

RESUMEN

RNA splicing is highly prevalent in the brain and has strong links to neuropsychiatric disorders, yet the role of cell-type-specific splicing or transcript-isoform diversity during human brain development has not been systematically investigated. Here, we leveraged single-molecule long-read sequencing to deeply profile the full-length transcriptome of the germinal zone (GZ) and cortical plate (CP) regions of the developing human neocortex at tissue and single-cell resolution. We identified 214,516 unique isoforms, of which 72.6% are novel (unannotated in Gencode-v33), and uncovered a substantial contribution of transcript-isoform diversity, regulated by RNA binding proteins, in defining cellular identity in the developing neocortex. We leveraged this comprehensive isoform-centric gene annotation to re-prioritize thousands of rare de novo risk variants and elucidate genetic risk mechanisms for neuropsychiatric disorders. One-Sentence Summary: A cell-specific atlas of gene isoform expression helps shape our understanding of brain development and disease. Structured Abstract: INTRODUCTION: The development of the human brain is regulated by precise molecular and genetic mechanisms driving spatio-temporal and cell-type-specific transcript expression programs. Alternative splicing, a major mechanism increasing transcript diversity, is highly prevalent in the human brain, influences many aspects of brain development, and has strong links to neuropsychiatric disorders. Despite this, the cell-type-specific transcript-isoform diversity of the developing human brain has not been systematically investigated.RATIONALE: Understanding splicing patterns and isoform diversity across the developing neocortex has translational relevance and can elucidate genetic risk mechanisms in neurodevelopmental disorders. However, short-read sequencing, the prevalent technology for transcriptome profiling, is not well suited to capturing alternative splicing and isoform diversity. To address this, we employed third-generation long-read sequencing, which enables capture and sequencing of complete individual RNA molecules, to deeply profile the full-length transcriptome of the germinal zone (GZ) and cortical plate (CP) regions of the developing human neocortex at tissue and single-cell resolution.RESULTS: We profiled microdissected GZ and CP regions of post-conception week (PCW) 15-17 human neocortex in bulk and at single-cell resolution across six subjects using high-fidelity long-read sequencing (PacBio IsoSeq). We identified 214,516 unique isoforms, of which 72.6% were novel (unannotated in Gencode), and >7,000 novel exons, expanding the proteome by 92,422 putative proteoforms. We uncovered thousands of isoform switches during cortical neurogenesis predicted to impact RNA regulatory domains or protein structure and implicating previously uncharacterized RNA-binding proteins in cellular identity and neuropsychiatric disease. At the single-cell level, early-stage excitatory neurons exhibited the greatest isoform diversity, and isoform-centric single-cell clustering led to the identification of previously uncharacterized cell states. We systematically assessed the contribution of transcriptomic features, and localized cell and spatio-temporal transcript expression signatures across neuropsychiatric disorders, revealing predominant enrichments in dynamic isoform expression and utilization patterns and that the number and complexity of isoforms per gene is strongly predictive of disease. Leveraging this resource, we re-prioritized thousands of rare de novo risk variants associated with autism spectrum disorders (ASD), intellectual disability (ID), and neurodevelopmental disorders (NDDs), more broadly, to potentially more severe consequences and revealed a larger proportion of cryptic splice variants with the expanded transcriptome annotation provided in this study.CONCLUSION: Our study offers a comprehensive landscape of isoform diversity in the human neocortex during development. This extensive cataloging of novel isoforms and splicing events sheds light on the underlying mechanisms of neurodevelopmental disorders and presents an opportunity to explore rare genetic variants linked to these conditions. The implications of our findings extend beyond fundamental neuroscience, as they provide crucial insights into the molecular basis of developmental brain disorders and pave the way for targeted therapeutic interventions. To facilitate exploration of this dataset we developed an online portal ( https://sciso.gandallab.org/ ).

3.
Curr Biol ; 32(18): 4025-4039.e3, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35985328

RESUMEN

The maturation of sleep behavior across a lifespan (sleep ontogeny) is an evolutionarily conserved phenomenon. Mammalian studies have shown that in addition to increased sleep duration, early life sleep exhibits stark differences compared with mature sleep with regard to sleep states. How the intrinsic maturation of sleep output circuits contributes to sleep ontogeny is poorly understood. The fruit fly Drosophila melanogaster exhibits multifaceted changes to sleep from juvenile to mature adulthood. Here, we use a non-invasive probabilistic approach to investigate the changes in sleep architecture in juvenile and mature flies. Increased sleep in juvenile flies is driven primarily by a decreased probability of transitioning to wake and characterized by more time in deeper sleep states. Functional manipulations of sleep-promoting neurons in the dorsal fan-shaped body (dFB) suggest that these neurons differentially regulate sleep in juvenile and mature flies. Transcriptomic analysis of dFB neurons at different ages and a subsequent RNAi screen implicate the genes involved in dFB sleep circuit maturation. These results reveal that the dynamic transcriptional states of sleep output neurons contribute to the changes in sleep across the lifespan.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Mamíferos , Neuronas/fisiología , Sueño/fisiología
4.
Sleep Med Rev ; 62: 101595, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35158305

RESUMEN

Sleep disturbances (SD) accompany many neurodevelopmental disorders, suggesting SD is a transdiagnostic process that can account for behavioral deficits and influence underlying neuropathogenesis. Autism Spectrum Disorder (ASD) comprises a complex set of neurodevelopmental conditions characterized by challenges in social interaction, communication, and restricted, repetitive behaviors. Diagnosis of ASD is based primarily on behavioral criteria, and there are no drugs that target core symptoms. Among the co-occurring conditions associated with ASD, SD are one of the most prevalent. SD often arises before the onset of other ASD symptoms. Sleep interventions improve not only sleep but also daytime behaviors in children with ASD. Here, we examine sleep phenotypes in multiple model systems relevant to ASD, e.g., mice, zebrafish, fruit flies and worms. Given the functions of sleep in promoting brain connectivity, neural plasticity, emotional regulation and social behavior, all of which are of critical importance in ASD pathogenesis, we propose that synaptic dysfunction is a major mechanism that connects ASD and SD. Common molecular targets in this interplay that are involved in synaptic function might be a novel avenue for therapy of individuals with ASD experiencing SD. Such therapy would be expected to improve not only sleep but also other ASD symptoms.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Sueño-Vigilia , Animales , Trastorno del Espectro Autista/complicaciones , Encéfalo , Humanos , Ratones , Sueño , Trastornos del Sueño-Vigilia/complicaciones , Pez Cebra
5.
Sci Adv ; 7(23)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34088660

RESUMEN

Sleep disturbances in autism and neurodevelopmental disorders are common and adversely affect patient's quality of life, yet the underlying mechanisms are understudied. We found that individuals with mutations in CHD8, among the highest-confidence autism risk genes, or CHD7 suffer from disturbed sleep maintenance. These defects are recapitulated in Drosophila mutants affecting kismet, the sole CHD8/CHD7 ortholog. We show that Kismet is required in glia for early developmental and adult sleep architecture. This role localizes to subperineurial glia constituting the blood-brain barrier. We demonstrate that Kismet-related sleep disturbances are caused by high serotonin during development, paralleling a well-established but genetically unsolved autism endophenotype. Despite their developmental origin, Kismet's sleep architecture defects can be reversed in adulthood by a behavioral regime resembling human sleep restriction therapy. Our findings provide fundamental insights into glial regulation of sleep and propose a causal mechanistic link between the CHD8/CHD7/Kismet family, developmental hyperserotonemia, and autism-associated sleep disturbances.


Asunto(s)
Trastorno Autístico , Proteínas de Unión al ADN , Animales , Trastorno Autístico/genética , Barrera Hematoencefálica/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Drosophila/metabolismo , Neuroglía/metabolismo , Calidad de Vida , Serotonina , Sueño , Factores de Transcripción/metabolismo
6.
Sci Adv ; 7(20)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33980485

RESUMEN

Intellectual disability encompasses a wide spectrum of neurodevelopmental disorders, with many linked genetic loci. However, the underlying molecular mechanism for more than 50% of the patients remains elusive. We describe pathogenic variants in SMARCA5, encoding the ATPase motor of the ISWI chromatin remodeler, as a cause of a previously unidentified neurodevelopmental disorder, identifying 12 individuals with de novo or dominantly segregating rare heterozygous variants. Accompanying phenotypes include mild developmental delay, frequent postnatal short stature and microcephaly, and recurrent dysmorphic features. Loss of function of the SMARCA5 Drosophila ortholog Iswi led to smaller body size, reduced sensory dendrite complexity, and tiling defects in larvae. In adult flies, Iswi neural knockdown caused decreased brain size, aberrant mushroom body morphology, and abnormal locomotor function. Iswi loss of function was rescued by wild-type but not mutant SMARCA5. Our results demonstrate that SMARCA5 pathogenic variants cause a neurodevelopmental syndrome with mild facial dysmorphia.

7.
Sci Adv ; 7(8)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33597246

RESUMEN

Sleep disruptions are among the most commonly reported symptoms across neurodevelopmental disorders (NDDs), but mechanisms linking brain development to normal sleep are largely unknown. From a Drosophila screen of human NDD-associated risk genes, we identified the chromatin remodeler Imitation SWItch/SNF (ISWI) to be required for adult fly sleep. Loss of ISWI also results in disrupted circadian rhythms, memory, and social behavior, but ISWI acts in different cells and during distinct developmental times to affect each of these adult behaviors. Specifically, ISWI expression in type I neuroblasts is required for both adult sleep and formation of a learning-associated brain region. Expression in flies of the human ISWI homologs SMARCA1 and SMARCA5 differentially rescues adult phenotypes, while de novo SMARCA5 patient variants fail to rescue sleep. We propose that sleep deficits are a primary phenotype of early developmental origin in NDDs and point toward chromatin remodeling machinery as critical for sleep circuit formation.


Asunto(s)
Cromatina , Drosophila , Animales , Cromatina/genética , Ensamble y Desensamble de Cromatina , Cromosomas , Drosophila/genética , Humanos , Sueño/genética
8.
Elife ; 92020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32202500

RESUMEN

Across species, sleep in young animals is critical for normal brain maturation. The molecular determinants of early life sleep remain unknown. Through an RNAi-based screen, we identified a gene, pdm3, required for sleep maturation in Drosophila. Pdm3, a transcription factor, coordinates an early developmental program that prepares the brain to later execute high levels of juvenile adult sleep. PDM3 controls the wiring of wake-promoting dopaminergic (DA) neurites to a sleep-promoting region, and loss of PDM3 prematurely increases DA inhibition of the sleep center, abolishing the juvenile sleep state. RNA-Seq/ChIP-Seq and a subsequent modifier screen reveal that pdm3 represses expression of the synaptogenesis gene Msp300 to establish the appropriate window for DA innervation. These studies define the molecular cues governing sleep behavioral and circuit development, and suggest sleep disorders may be of neurodevelopmental origin.


Asunto(s)
Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Sueño/fisiología , Animales , Ritmo Circadiano/fisiología , Neuronas Dopaminérgicas/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Interferencia de ARN , Conducta Sexual Animal , Transducción de Señal
9.
Curr Biol ; 30(6): R263-R265, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32208148

RESUMEN

Two new studies use Drosophila to unravel the role of sleep in clearance of damaged neural processes.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Sueño , Animales , Drosophila , Proteínas de Drosophila , Sinapsis , Ubiquitina-Proteína Ligasas
10.
Nat Neurosci ; 18(10): 1446-54, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26322927

RESUMEN

The mammalian olfactory system uses a large family of odorant receptors (ORs) to detect and discriminate amongst a myriad of volatile odor molecules. Understanding odor coding requires comprehensive mapping between ORs and corresponding odors. We developed a means of high-throughput in vivo identification of OR repertoires responding to odorants using phosphorylated ribosome immunoprecipitation of mRNA from olfactory epithelium of odor-stimulated mice followed by RNA-Seq. This approach screened the endogenously expressed ORs against an odor in one set of experiments using awake and freely behaving mice. In combination with validations in a heterologous system, we identified sets of ORs for two odorants, acetophenone and 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), encompassing 69 OR-odorant pairs. We also identified shared amino acid residues specific to the acetophenone or TMT receptors and developed models to predict receptor activation by acetophenone. Our results provide a method for understanding the combinatorial coding of odors in vivo.


Asunto(s)
Neuronas/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Animales , Femenino , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Olfato/fisiología
11.
Chem Senses ; 39(6): 467-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24860069

RESUMEN

Despite being an everyday sensory experience, the nature of astringency perception is not clear. In this issue of Chemical Senses, Schöbel et al. demonstrate that astringency is a trigeminal sensation in human, and astringents trigger a G protein-coupled pathway in trigeminal ganglion cells in the mouse.


Asunto(s)
Astringentes/metabolismo , Proteínas de Unión al GTP/metabolismo , Gusto , Ganglio del Trigémino/citología , Animales , Humanos , Ratones , Boca/fisiología , Transducción de Señal , Ganglio del Trigémino/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...