Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 271(Pt 2): 132507, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768920

RESUMEN

This study employed an anionic heteropolysaccharide extracted from overgrown Enteromorpha and homopolysaccharide pullulan to fabricate a self-floating hydrogel by introducing bubble templates. Subsequently, green in-situ reduction and immobilization of silver nanoparticles (Ag NPs) in the hydrogel were successfully achieved without additional reducing agents. The heteropolysaccharide from Enteromorpha provides carboxyl and sulfate groups for Ag+ ions complexation, which is beneficial for the in-situ reduction of Ag NPs and inhibits their aggregation. The incorporation of bubble templates facilitates the creation of a hierarchical pore structure in the hydrogel, giving it self-floating properties for easy recycling, while the hierarchical network with rich anchor sites ensuring adequate traction for Ag NPs dispersion and stabilization. By adjusting polysaccharide content and using bubble templates, Ag NPs smaller than 10 nm can be obtained. The composite hydrogel exhibits tunable catalytic activity and excellent degradation towards Rhodamine B, Methyl Orange, and 4-Nitrophenol, with the normalized rate constant (knor) of 78.89, 59.08, and 30.42 min-1 g-1, respectively. Notably, the reduction efficiency remained above 98 % after 6 recycles with little leaching of Ag NPs, benefiting from its self-floating ability for easy recovery in practical applications.


Asunto(s)
Tecnología Química Verde , Hidrogeles , Nanopartículas del Metal , Polisacáridos , Plata , Hidrogeles/química , Catálisis , Plata/química , Polisacáridos/química , Nanopartículas del Metal/química , Contaminantes Químicos del Agua/química , Nitrofenoles/química , Rodaminas/química , Oxidación-Reducción , Compuestos Azo/química
2.
Molecules ; 29(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675635

RESUMEN

In many practical applications involving surfactants, achieving defoaming without affecting interfacial activity is a challenge. In this study, the antifoaming performance of REP-type block polymer nonionic surfactant C12EOmPOn was determined, and molecular dynamics simulation method was employed to investigate the molecular behaviors of surfactants at a gas/water interface, the detailed arrangement information of the different structural segments of the surfactant molecules and the inter-/intra-interactions between all the structural motifs in the interfacial layer were analyzed systematically, by which the antifoaming mechanisms of the surfactants were revealed. The results show that the EO and PO groups of REP-type polyether molecules are located in the aqueous phase near the interface, and the hydrophobic tails distribute separately, lying almost flat on the gas/water interface. The interaction between the same groups of EOs and POs is significantly stronger than with water. REP block polyethers with high polymerization degrees of EO and PO are more inclined to overlap into dense layers, resulting in the formation of aggregates resembling "oil lenses" spreading on the gas/water interface, which exerts a stronger antifoaming effect. This study provides a smart approach to obtaining efficient antifoaming performance at room temperature without adding other antifoam ingredients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...