Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Neoplasia ; 53: 101005, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38761506

RESUMEN

Colorectal cancer (CRC) stands as a prevalent malignancy globally. A pivotal event in CRC pathogenesis involves the loss-of-function mutation in the APC gene, leading to the formation of benign polyps. Despite the well-established role of APC, the contribution of CUL4B to CRC initiation in the pre-tumorous stage remains poorly understood. In this investigation, we generated a murine model by crossing ApcMin/+ mice with Cul4bΔIEC mice to achieve specific deletion of Cul4b in the gut epithelium against an ApcMin/+ background. By employing histological methods, RNA-sequencing (RNA-seq), and flow cytometry, we assessed alterations and characterized the immune microenvironment. Our results unveiled that CUL4B deficiency in gut epithelium expedited ApcMin/+ adenoma formation. Notably, CUL4B in adenomas restrained the accumulation of tumor-infiltrating myeloid-derived suppressor cells (MDSCs). In vivo inhibition of MDSCs significantly delayed the growth of CUL4B deleted ApcMin/+ adenomas. Furthermore, the addition of MDSCs to in vitro cultured ApcMin/+; Cul4bΔIEC adenoma organoids mitigated their alterations. Mechanistically, CUL4B directly interacted with the promoter of Csf3, the gene encoding granulocyte-colony stimulating factor (G-CSF) by coordinating with PRC2. Inhibiting CUL4B epigenetically activated the expression of G-CSF, promoting the recruitment of MDSCs. These findings offer novel insights into the tumor suppressor-like roles of CUL4B in regulating ApcMin/+ adenomas, suggesting a potential therapeutic strategy for CRC initiation and progression in the context of activated Wnt signaling.


Asunto(s)
Adenoma , Proteínas Cullin , Modelos Animales de Enfermedad , Células Supresoras de Origen Mieloide , Animales , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Ratones , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/patología , Adenoma/patología , Adenoma/genética , Adenoma/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Humanos , Microambiente Tumoral/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/etiología , Eliminación de Gen , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo
2.
Sci Rep ; 14(1): 9906, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689033

RESUMEN

CUL4B, a crucial scaffolding protein in the largest E3 ubiquitin ligase complex CRL4B, is involved in a broad range of physiological and pathological processes. While previous research has shown that CUL4B participates in maintaining intestinal homeostasis and function, its involvement in facilitating intestinal recovery following ionizing radiation (IR) damage has not been fully elucidated. Here, we utilized in vivo and in vitro models to decipher the role of CUL4B in intestinal repair after IR-injury. Our findings demonstrated that prior to radiation exposure, CUL4B inhibited the ubiquitination modification of PSME3, which led to the accumulation of PSME3 and subsequent negative regulation of p53-mediated apoptosis. In contrast, after radiation, CUL4B dissociated from PSME3 and translocated into the nucleus at phosphorylated histones H2A (γH2AX) foci, thereby impeding DNA damage repair and augmenting p53-mediated apoptosis through inhibition of BRCA1 phosphorylation and RAD51. Our study elucidated the dynamic role of CUL4B in the repair of radiation-induced intestinal damage and uncovered novel molecular mechanisms underlying the repair process, suggesting a potential therapeutic strategy of intestinal damage after radiation therapy for cancers.


Asunto(s)
Apoptosis , Proteínas Cullin , Intestinos , Regeneración , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Apoptosis/efectos de la radiación , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteínas Cullin/metabolismo , Proteínas Cullin/genética , Daño del ADN , Reparación del ADN , Histonas/metabolismo , Intestinos/efectos de la radiación , Intestinos/patología , Ratones Endogámicos C57BL , Fosforilación/efectos de la radiación , Recombinasa Rad51/metabolismo , Radiación Ionizante , Regeneración/efectos de la radiación , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación
3.
Cell Death Dis ; 15(2): 121, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331954

RESUMEN

Mutation in CUL4B gene is one of the most common causes for X-linked intellectual disability (XLID). CUL4B is the scaffold protein in CUL4B-RING ubiquitin ligase (CRL4B) complex. While the roles of CUL4B in cancer progression and some developmental processes like adipogenesis, osteogenesis, and spermatogenesis have been studied, the mechanisms underlying the neurological disorders in patients with CUL4B mutations are poorly understood. Here, using 2D neuronal culture and cerebral organoids generated from the patient-derived induced pluripotent stem cells and their isogenic controls, we demonstrate that CUL4B is required to prevent premature cell cycle exit and precocious neuronal differentiation of neural progenitor cells. Moreover, loss-of-function mutations of CUL4B lead to increased synapse formation and enhanced neuronal excitability. Mechanistically, CRL4B complex represses transcription of PPP2R2B and PPP2R2C genes, which encode two isoforms of the regulatory subunit of protein phosphatase 2 A (PP2A) complex, through catalyzing monoubiquitination of H2AK119 in their promoter regions. CUL4B mutations result in upregulated PP2A activity, which causes inhibition of AKT and ERK, leading to premature cell cycle exit. Activation of AKT and ERK or inhibition of PP2A activity in CUL4B mutant organoids rescues the neurogenesis defect. Our work unveils an essential role of CUL4B in human cortical development.


Asunto(s)
Proteína Fosfatasa 2 , Proteínas Proto-Oncogénicas c-akt , Masculino , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Fosfatasa 2/genética , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Mutación/genética , Neurogénesis/genética
4.
Oncogene ; 42(42): 3113-3126, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37653114

RESUMEN

Lung cancer is the leading cause of cancer-related death worldwide. KRAS mutations are the most common oncogenic alterations found in lung cancer. Unfortunately, treating KRAS-mutant lung adenocarcinoma (ADC) remains a major oncotherapeutic challenge. Here, we used both autochthonous and transplantable KRAS-mutant tumor models to investigate the role of tumor-derived CUL4B in KRAS-driven lung cancers. We showed that knockout or knockdown of CUL4B promotes lung ADC growth and progression in both models. Mechanistically, CUL4B directly binds to the promoter of Cxcl2 and epigenetically represses its transcription. CUL4B deletion increases the expression of CXCL2, which binds to CXCR2 on myeloid-derived suppressor cells (MDSCs) and promotes their migration to the tumor microenvironment. Targeting of MDSCs significantly delayed the growth of CUL4B knockdown KRAS-mutant tumors. Collectively, our study provides mechanistic insights into the novel tumor suppressor-like functions of CUL4B in regulating KRAS-driven lung tumor development.

5.
Cell Death Dis ; 14(6): 388, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391410

RESUMEN

Chemotherapy is a common strategy to treat cancer. However, acquired resistance and metastasis are the major obstacles to successful treatment. Anastasis is a process by which cells survive executioner caspase activation when facing apoptotic stress. Here we demonstrate that colorectal cancer cells can undergo anastasis after transient exposure to chemotherapeutic drugs. Using a lineage tracing system to label and isolate cells that have experienced executioner caspase activation in response to drug treatment, we show that anastasis grants colorectal cancer cells enhanced migration, metastasis, and chemoresistance. Mechanistically, treatment with chemotherapeutic drugs induces upregulated expression of cIAP2 and activation of NFκB, which are required for cells to survive executioner caspase activation. The elevated cIAP2/NFκB signaling persists in anastatic cancer cells to promote migration and chemoresistance. Our study unveils that cIAP2/NFκB-dependent anastasis promotes acquired resistance and metastasis after chemotherapy.


Asunto(s)
Reversión de Muerte Celular , Neoplasias Colorrectales , Humanos , Resistencia a Antineoplásicos , FN-kappa B , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Caspasas
6.
Bone Res ; 11(1): 29, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268647

RESUMEN

Dysregulated lineage commitment of mesenchymal stem cells (MSCs) contributes to impaired bone formation and an imbalance between adipogenesis and osteogenesis during skeletal aging and osteoporosis. The intrinsic cellular mechanism that regulates MSC commitment remains unclear. Here, we identified Cullin 4B (CUL4B) as a critical regulator of MSC commitment. CUL4B is expressed in bone marrow MSCs (BMSCs) and downregulated with aging in mice and humans. Conditional knockout of Cul4b in MSCs resulted in impaired postnatal skeletal development with low bone mass and reduced bone formation. Moreover, depletion of CUL4B in MSCs aggravated bone loss and marrow adipose accumulation during natural aging or after ovariectomy. In addition, CUL4B deficiency in MSCs reduced bone strength. Mechanistically, CUL4B promoted osteogenesis and inhibited adipogenesis of MSCs by repressing KLF4 and C/EBPδ expression, respectively. The CUL4B complex directly bound to Klf4 and Cebpd and epigenetically repressed their transcription. Collectively, this study reveals CUL4B-mediated epigenetic regulation of the osteogenic or adipogenic commitment of MSCs, which has therapeutic implications in osteoporosis.

7.
Oncogenesis ; 12(1): 34, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355711

RESUMEN

Cancer relapse and metastasis are major obstacles for effective treatment. One important mechanism to eliminate cancer cells is to induce apoptosis. Activation of executioner caspases is the key step in apoptosis and was considered "a point of no return". However, in recent years, accumulating evidence has demonstrated that cells can survive executioner caspase activation in response to apoptotic stimuli through a process named anastasis. Here we show that breast cancer cells that have survived through anastasis (anastatic cells) after exposure to chemotherapeutic drugs acquire enhanced proliferation and migration. Mechanistically, cadherin 12 (CDH12) is persistently upregulated in anastatic cells and promotes breast cancer malignancy via activation of ERK and CREB. Moreover, we demonstrate that executioner caspase activation induced by chemotherapeutic drugs results in loss of DNA methylation and repressive histone modifications in the CDH12 promoter region, leading to increased CDH12 expression. Our work unveils the mechanism underlying anastasis-induced enhancement in breast cancer malignancy, offering new therapeutic targets for preventing post-chemotherapy cancer relapse and metastasis.

8.
Cell Rep ; 42(6): 112550, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37224018

RESUMEN

Diabetic kidney disease (DKD) is the most prevalent chronic kidney disease. Macrophage infiltration in the kidney is critical for the progression of DKD. However, the underlying mechanism is far from clear. Cullin 4B (CUL4B) is the scaffold protein in CUL4B-RING E3 ligase complexes. Previous studies have shown that depletion of CUL4B in macrophages aggravates lipopolysaccharide-induced peritonitis and septic shock. In this study, using two mouse models for DKD, we demonstrate that myeloid deficiency of CUL4B alleviates diabetes-induced renal injury and fibrosis. In vivo and in vitro analyses reveal that loss of CUL4B suppresses migration, adhesion, and renal infiltration of macrophages. Mechanistically, we show that high glucose upregulates CUL4B in macrophages. CUL4B represses expression of miR-194-5p, which leads to elevated integrin α9 (ITGA9), promoting migration and adhesion. Our study suggests the CUL4B/miR-194-5p/ITGA9 axis as an important regulator for macrophage infiltration in diabetic kidneys.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , MicroARNs , Animales , Ratones , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Cadenas alfa de Integrinas/metabolismo , Macrófagos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
10.
Cell Death Differ ; 30(6): 1488-1502, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024604

RESUMEN

CD4+ T helper (Th) cell differentiation is regulated by lineage-specific expression of transcription factors, which is tightly associated with epigenetic modifications, including histone acetylation and methylation. However, the factors regulating histone modifications involved in Th cell differentiation remain largely unknown. We herein demonstrated a critical role of Cullin 4B (CUL4B) in restricting Th1 and Th2 cell differentiation. CUL4B, which is assembled into the CUL4B-RING E3 ligase (CRL4B) complex, participates in various physiological and developmental processes through epigenetic repression of transcription. Depletion of Cul4b in CD4+ T cells enhanced Th1 and Th2 cell differentiation. In vivo, an aggravated Th2 response caused by the absence of CUL4B was observed in a murine asthma model. Mechanistically, the CRL4B complex promoted monoubiquitination at H2AK119 (H2AK119ub1) and polycomb repressive complex 2 (PRC2)-mediated trimethylation at H3K27 (H3K27me3) at Tbx21 and Maf and consequently repressed their expression during Th cell differentiation. Our study suggests that CRL4B complex-mediated H2AK119ub1 deposition functions to prevent the aberrant expression of Th1 and Th2 lineage-specific genes.


Asunto(s)
Epigénesis Genética , Complejo Represivo Polycomb 2 , Animales , Ratones , Ubiquitinación , Metilación , Diferenciación Celular , Complejo Represivo Polycomb 2/metabolismo
11.
Cell Death Differ ; 30(3): 809-824, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36447048

RESUMEN

Activation of executioner caspases was once considered as a point of no return in apoptosis. However, in recent years, accumulating evidence has demonstrated that cells can survive executioner caspase activation in response to apoptotic stimuli through a process called anastasis. In this study, we developed a reporter system, mCasExpress, to track mammalian cells that survive executioner caspase activation. We demonstrate that anastatic ovarian cancer cells acquire enhanced migration following their transient exposure to apoptotic stimulus TRAIL or Paclitaxel. Moreover, anastatic cancer cells secrete more pro-angiogenic factors that enable tumor angiogenesis, growth and metastasis. Mechanistically, we demonstrate that activation of p38 MAPK, which occurs in a caspase-dependent manner in response to apoptotic stress to promote anastasis, persists at a higher level in anastatic cancer cells even after removal of apoptotic stimuli. Importantly, p38 is essential for the elevated migratory and angiogenic capacity in the anastatic cells. Our work unveils anastasis as a potential driver of tumor angiogenesis and metastasis.


Asunto(s)
Neoplasias Ováricas , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Humanos , Femenino , Reversión de Muerte Celular , Apoptosis/fisiología , Caspasas , Mamíferos
12.
J Assist Reprod Genet ; 40(1): 75-81, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36471203

RESUMEN

PURPOSE: We aimed to identify pathogenic variants in a female patient with primary infertility and recurrent failure of in vitro fertilization with zygotic cleavage failure. METHODS: The genomic DNA from the affected individual was subjected to whole-exome sequencing and the variant was confirmed by Sanger sequencing. The functional effect of the identified variant was further investigated in 293 T cells. RESULTS: We identified a novel homozygous deletion in BTG4 (c.580_616del) in the affected individual. The deletion results in frameshift and replacement of the last 29 residues (aa195-223) with 66 random amino acids. The mutated amino acid residues are highly conserved among mammalian species. Co-immunoprecipitation in 293 T cells showed that the mutation abolished the interaction between BTG4 and PABPN1L. CONCLUSION: This study conforms previous studies and expands the mutational spectrum of BTG4. Our findings prove the functional importance of the C-terminal of BTG4. BTG4 is a potential diagnostic and therapeutic target for patients suffering from zygotic cleavage failure.


Asunto(s)
Infertilidad Femenina , Animales , Femenino , Humanos , Proteínas de Ciclo Celular/genética , Fertilización In Vitro/métodos , Homocigoto , Infertilidad Femenina/genética , Infertilidad Femenina/patología , Mamíferos , Mutación/genética , Proteínas de Unión a Poli(A)/genética , Eliminación de Secuencia
13.
Cell Mol Gastroenterol Hepatol ; 14(6): 1177-1198, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35987451

RESUMEN

BACKGROUND & AIMS: Covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV), existing as a stable minichromosome in the hepatocyte, is responsible for persistent HBV infection. Maintenance and sustained replication of cccDNA require its interaction with both viral and host proteins. However, the cccDNA-interacting host factors that limit HBV replication remain elusive. METHODS: Minicircle HBV (MC-HBV), a recombinant cccDNA, was constructed based on chimeric intron and minicircle DNA technology. By mass spectrometry based on pull-down with biotinylated MC-HBV, the cccDNA-hepatocyte interaction profile was mapped. HBV replication was assessed in different cell models that support cccDNA formation. RESULTS: MC-HBV supports persistent HBV replication and mimics the cccDNA minichromosome. The MC-HBV-based screen identified cohesin complex as a cccDNA binding host factor, leading to reduced HBV replication. Mechanistically, with the help of CCCTC-binding factor (CTCF), which has specific binding sites on cccDNA, cohesin loads on cccDNA and reshapes cccDNA confirmation to prevent RNA polymerase II enrichment. Interestingly, HBV X protein transcriptionally reduces structural maintenance of chromosomes complex expression to partially relieve the inhibitory role of the cohesin complex on HBV replication. CONCLUSIONS: Our data not only provide a feasible approach to explore cccDNA-binding factors, but also identify cohesin/CTCF complex as a critical host restriction factor for cccDNA-driven HBV replication. These findings provide a novel insight into cccDNA-host interaction and targeted therapeutic intervention for HBV infection.


Asunto(s)
ADN Circular , Virus de la Hepatitis B , ADN Circular/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas , Cohesinas
14.
Cell Death Differ ; 29(9): 1673-1688, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35197566

RESUMEN

Hierarchical organization of intestine relies on the self-renewal and tightly regulated differentiation of intestinal stem cells (ISCs). Although signals like Wnt are known to sustain the continued intestinal renewal by maintaining ISCs activity and lineage commitment, molecular mechanisms underlying ISCs 'stemness' and supportive niche have not been well understood. Here, we found that CUL4B-RING ubiquitin ligase (CRL4B) regulates intestinal homeostasis by targeting immunity-related GTPase family M member 1 (IRGM1) for proteasomal degradation. CUL4B was mainly expressed at ISCs zone. Deletion of Cul4b led to reduced self-renewal of ISCs and a decreased lineage differentiation towards secretory progenitors through downregulated Wnt signals. Besides, Cul4b-null mice exhibited impaired Paneth cells number and structure. Mechanistically, CRL4B complex were associated with WD40 proteins and targeted IRGM1 at K270 for ubiquitination and proteosomal degradation. Impaired intestinal function caused by CUL4B deletion was rescued by down-regulation of its substrate IRGM1. Our results identified CUL4B as a novel regulator of ISCs and revealed a new 26 S proteasome degradation mechanism in intestine self-renewal and lineage commitment.


Asunto(s)
Proteínas Cullin , Proteínas de Unión al GTP/metabolismo , Vía de Señalización Wnt , Animales , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Homeostasis , Intestinos , Ratones , Ratones Noqueados , Ubiquitina , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
15.
Oncogene ; 41(3): 427-443, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34773075

RESUMEN

Reactive oxygen species (ROS) serve as critical signals in various cellular processes. Excessive ROS cause cell death or senescence and mediates the therapeutic effect of many cancer drugs. Recent studies showed that ROS increasingly accumulate during G2/M arrest, the underlying mechanism, however, has not been fully elucidated. Here, we show that in cancer cells treated with anticancer agent TH287 or paclitaxel that causes M arrest, mitochondria accumulate robustly and produce excessive mitochondrial superoxide, which causes oxidative DNA damage and undermines cell survival and proliferation. While mitochondrial mass is greatly increased in cells arrested at M phase, the mitochondrial function is compromised, as reflected by reduced mitochondrial membrane potential, increased SUMOylation and acetylation of mitochondrial proteins, as well as an increased metabolic reliance on glycolysis. CHK1 functional disruption decelerates cell cycle, spares the M arrest and attenuates mitochondrial oxidative stress. Induction of mitophagy and blockade of mitochondrial biogenesis, measures that reduce mitochondrial accumulation, also decelerate cell cycle and abrogate M arrest-coupled mitochondrial oxidative stress. These results suggest that cell cycle progression and mitochondrial homeostasis are interdependent and coordinated, and that impairment of mitochondrial homeostasis and the associated redox signaling may mediate the antineoplastic effect of the M arrest-inducing chemotherapeutics. Our findings provide insights into the fate of cells arrested at M phase and have implications in cancer therapy.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Homeostasis , Humanos , Mitosis , Estrés Oxidativo , Transducción de Señal
16.
Mol Metab ; 56: 101423, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34954108

RESUMEN

OBJECTIVE: Genome-wide association studies identified ORMDL3 as an obesity-related gene, and its expression was negatively correlated with body mass index. However, the precise biological roles of ORMDL3 in obesity and lipid metabolism remain uncharacterized. Here, we investigate the function of ORMDL3 in adipose tissue thermogenesis and high fat diet (HFD)-induced insulin resistance. METHODS: Ormdl3-deficient (Ormdl3-/-) mice were employed to delineate the function of ORMDL3 in brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. Glucose and lipid homeostasis in Ormdl3-/- mice fed a HFD were assessed. The lipid composition in adipose tissue was evaluated by mass spectrometry. Primary adipocytes in culture were used to determine the mechanism by which ORMDL3 regulates white adipose browning. RESULTS: BAT thermogenesis and WAT browning were significantly impaired in Ormdl3-/- mice upon cold exposure or administration with the ß3 adrenergic agonist. In addition, compared to WT mice, Ormdl3-/- mice displayed increased weight gain and insulin resistance in response to HFD. The induction of uncoupling protein 1 (UCP1), a marker of thermogenesis, was attenuated in primary adipocytes derived from Ormdl3-/- mice. Importantly, ceramide levels were elevated in the adipose tissue of Ormdl3-/- mice. In addition, the reduction in thermogenesis and increase in body weight caused by Ormdl3 deficiency could be rescued by inhibiting the production of ceramides. CONCLUSION: Our findings suggest that ORMDL3 contributes to the regulation of BAT thermogenesis, WAT browning, and insulin resistance.


Asunto(s)
Tejido Adiposo Pardo , Ceramidas , Resistencia a la Insulina , Proteínas de la Membrana , Termogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Ceramidas/biosíntesis , Metabolismo Energético , Estudio de Asociación del Genoma Completo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados
17.
Cancer Biol Med ; 2021 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-33969670

RESUMEN

OBJECTIVE: Hepatitis B virus (HBV) infection is a major public health problem worldwide. However, the regulatory mechanisms underlying HBV replication remain unclear. Cullin 4B-RING ubiquitin E3 ligase (CRL4B) is involved in regulating diverse physiological and pathophysiological processes. In our study, we aimed to explain the role of CUL4B in HBV infection. METHODS: Cul4b transgenic mice or conditional knockout mice, as well as liver cell lines with CUL4B overexpression or knockdown, were used to assess the role of CUL4B in HBV replication. Immunoprecipitation assays and immunofluorescence staining were performed to study the interaction between CUL4B and HBx. Cycloheximide chase assays and in vivo ubiquitination assays were performed to evaluate the half-life and the ubiquitination status of HBx. RESULTS: The hydrodynamics-based hepatitis B model in Cul4b transgenic or conditional knockout mice indicated that CUL4B promoted HBV replication (P < 0.05). Moreover, the overexpression or knockdown system in human liver cell lines validated that CUL4B increased HBV replication in an HBx-dependent manner. Importantly, immunoprecipitation assays and immunofluorescence staining showed an interaction between CUL4B and HBx. Furthermore, CUL4B upregulated HBx protein levels by inhibiting HBx ubiquitination and proteasomal degradation (P < 0.05). Finally, a positive correlation between CUL4B expression and HBV pgRNA level was observed in liver tissues from HBV-positive patients and HBV transgenic mice. CONCLUSIONS: CUL4B enhances HBV replication by interacting with HBx and disrupting its ubiquitin-dependent proteasomal degradation. CUL4B may therefore be a potential target for anti-HBV therapy.

19.
Front Oncol ; 11: 638802, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869025

RESUMEN

Resistance to temozolomide (TMZ), the first-line chemotherapeutic drug for glioblastoma (GBM) and anaplastic gliomas, is one of the most significant obstacles in clinical treatment. TMZ resistance is regulated by complex genetic and epigenetic networks. Understanding the mechanisms of TMZ resistance can help to identify novel drug targets and more effective therapies. CUL4B has been shown to be upregulated and promotes progression and chemoresistance in several cancer types. However, its regulatory effect and mechanisms on TMZ resistance have not been elucidated. The aim of this study was to decipher the role and mechanism of CUL4B in TMZ resistance. Western blot and public datasets analysis showed that CUL4B was upregulated in glioma specimens. CUL4B elevation positively correlated with advanced pathological stage, tumor recurrence, malignant molecular subtype and poor survival in glioma patients receiving TMZ treatment. CUL4B expression was correlated with TMZ resistance in GBM cell lines. Knocking down CUL4B restored TMZ sensitivity, while upregulation of CUL4B promoted TMZ resistance in GBM cells. By employing senescence ß-galactosidase staining, quantitative reverse transcription PCR and Chromatin immunoprecipitation experiments, we found that CUL4B coordinated histone deacetylase (HDAC) to co-occupy the CDKN1A promoter and epigenetically silenced CDKN1A transcription, leading to attenuation of TMZ-induced senescence and rendering the GBM cells TMZ resistance. Collectively, our findings identify a novel mechanism by which GBM cells develop resistance to TMZ and suggest that CUL4B inhibition may be beneficial for overcoming resistance.

20.
Stem Cell Res ; 53: 102343, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33878711

RESUMEN

Mutations in COL4A5 on chromosome Xq22 cause X-linked Alport syndrome (XLAS). In this study, we generated two human induced pluripotent stem cell (iPSC) lines from two male patients carrying mutation c.796C > T (p.R266X) in COL4A5 gene. The two iPSC lines retain the original mutation, possess normal karyotypes, express pluripotency markers and bear differentiation potential.


Asunto(s)
Células Madre Pluripotentes Inducidas , Nefritis Hereditaria , Diferenciación Celular , Colágeno Tipo IV/genética , Humanos , Masculino , Mutación , Nefritis Hereditaria/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...