Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(54): 6913-6916, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38881424

RESUMEN

A unique fluorescent sensing probe for UO22+ detection was fabricated with terbium-based metal organic frameworks via introducing specific recognition sites (denoted as Tb-TDPAT). The newly formed Tb-TDPAT presented remarkable detection sensitivity and selectivity towards UO22+, surpassing the need for complex post-modification methods.

2.
Environ Sci Technol ; 58(23): 10378-10387, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38805367

RESUMEN

Room temperature catalytic oxidation (RTCO) using non-noble metals has emerged as a highly promising technique for removal of formaldehyde (HCHO) under ambient conditions; however, non-noble catalysts still face the challenges related to poor water resistance and low stability under harsh conditions. In this study, we synthesized a series of layered double hydroxides (LDHs) incorporating various dual metals (MgAl, ZnAl, NiAl, NiFe, and NiTi) for formaldehyde oxidation at ambient temperature. Among the synthesized catalysts, the NiTi-LDH catalyst showed an HCHO removal efficiency and CO2 yield close to 100.0%, and exceptional water resistance and chemical stability on running 1300 min. The abundant hydroxyl groups in LDHs directly bonded with HCHO, leading to the production of CO2 and H2O, thus inhibiting the formation of CO, even in the absence of O2 and H2O. The coexistence of O2 effectively reduced the reaction barrier for H2O molecule dissociation, facilitating the formation of hydroxyl groups and their subsequent backfill on the catalyst surface. The mechanisms underlying the involvement and regeneration of hydroxyl groups in room temperature oxidation of formaldehyde were elucidated with the combined in situ DRIFTS, HCHO-TPD-MS, and DFT calculations. This work not only demonstrates the potential of LDH catalysts in environmental applications but also advances the understanding of the fundamental processes involved in room temperature oxidation of formaldehyde.


Asunto(s)
Formaldehído , Hidróxidos , Oxidación-Reducción , Temperatura , Formaldehído/química , Hidróxidos/química , Catálisis
3.
Sci Total Environ ; 939: 173224, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763187

RESUMEN

Novel brominated flame retardants (NBFRs) have been developed as replacements for legacy brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). The prevalence of NBFRs in aquatic environments has initiated intense concerns that they resemble to BFRs. To comprehensively elucidate the fate of NBFRs in aquatic environments, this review summarizes the physico-chemical properties, distribution, bioaccumulation, and fates in aquatic environments. 1,2-bis(2,3,4,5,6-pentabromophenyl) ethane (DBDPE) as the major substitute for PBDEs is the primary NBFR. The release from industrial point sources such as e-waste recycling stations is the dominant way for NBFRs to enter the environment, which results in significant differences in the regional distribution of NBFRs. Sediment is the major sink of NBFRs attributed to the high hydrophobicity. Significantly, there is no decreasing trend of NBFRs concentrations, while PBDEs achieved the peak value in 1970-2000 and decreased gradually. The bioaccumulation of NBFRs is reported in both field studies and laboratory studies, which is regulated by the active area, lipid contents, trophic level of aquatic organisms, and the log KOW of NBFRs. The biotransformation of NBFRs showed similar metabolism patterns to that of BFRs, including debromination, hydroxylation, methoxylation, hydrolysis, and glycosylation. In addition, NBFRs show great potential in trophic magnification along the aquatic food chain, which could pose a higher risk to high trophic-level species. The passive uptake by roots dominates the plant uptake of NBFRs, followed by acropetal and basipetal bidirectional transportation between roots and leaves in plants. This review will provide the support to understand the current pollution characteristics of NBFRs and highlight perspectives for future research.


Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama , Éteres Difenilos Halogenados , Hidrocarburos Bromados , Contaminantes Químicos del Agua , Retardadores de Llama/metabolismo , Retardadores de Llama/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Éteres Difenilos Halogenados/metabolismo , Éteres Difenilos Halogenados/análisis , Hidrocarburos Bromados/metabolismo , Hidrocarburos Bromados/análisis , Bioacumulación
4.
Anal Chem ; 96(11): 4673-4681, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38451931

RESUMEN

Perfluorooctanesulfonic acid potassium salt (PFOS) residues in ecosystems over long periods are of increasing concern and require a selective and stable optical probe for monitoring. Herein, two functional groups (-F and -NH2) with opposite electronic modulation ability were introduced into Fe/Zn-BDC (denoted as Fe/Zn-BDC-F4 and Fe/Zn-BDC-NH2, respectively) to tailor the coordination environment of the Fe metal center, further regulating the nanozyme activity efficiently. Notably, the peroxidase-like activity is related to the coordination environment of the nanozymes and obeys the following order Fe/Zn-BDC-F4 > Fe/Zn-BDC > Fe/Zn-BDC-NH2. Based on the excellent peroxidase-like activity of Fe/Zn-BDC-F4 and the characteristics of being rich in F atoms, a rapid, selective, and visible colorimetric method was developed for detecting PFOS with a detection limit of 100 nM. The detection mechanism was attributed to various interaction forces between Fe/Zn-BDC-F4 and PFOS, including electrostatic interactions, Fe-S interactions, Fe-F bonds, and halogen bonds. This work not only offers new insights into the atomic-scale rational design of highly active nanozymes but also presents a novel approach to detecting PFOS in environmental samples.


Asunto(s)
Ecosistema , Potasio , Colorimetría , Peroxidasas , Zinc
5.
Anal Chem ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38330425

RESUMEN

Uranyl ions (UO22+) are recognized as important indicators for monitoring sudden nuclear accidents. However, the interferences coexisting in the complicated environmental matrices impart serious constraints on the reliability of current on-site monitoring methods. Herein, a novel ratiometric method for the highly sensitive and selective detection of UO22+ is reported based on a [Eu(diaminoterephthalic acid)] (Eu-DATP) metal-organic framework. Benefiting from the unique chemical structure of Eu-DATP, energy transfer from DATP to UO22+ was enabled, resulting in the up-regulated fluorescence of UO22+ and the simultaneous down-regulated fluorescence of Eu3+. The limit of detection reached as low as 2.7 nM, which was almost 2 orders of magnitude below the restricted limit in drinking water set by the United States Environmental Protection Agency (130 nM). The Eu-DATP probe showed excellent specificity to UO22+ over numerous interfering species, as the intrinsic emissions of UO22+ were triggered. This unprecedentedly high selectivity is especially beneficial for monitoring UO22+ in complicated environmental matrices with no need for tedious sample pretreatment, such as filtration and digestion. Then, by facilely equipping a Eu-DATP-based sampler on a drone, remotely controlled sampling and on-site analysis in real water samples were realized. The concentrations of UO22+ were determined to be from 16.5 to 23.5 nM in the river water of the Guangzhou downtown area, which was consistent with the results determined by the gold-standard inductively coupled plasma mass spectrometry. This study presents a reliable and convenient method for the on-site analysis of UO22+.

6.
Anal Chem ; 96(11): 4544-4552, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38362708

RESUMEN

Emerging contaminants have recently evolved into a severe worldwide environmental issue. Organophosphate flame retardants (OPFRs) with neurotoxicity, genotoxicity, and reproductive and developmental toxicity are a class of notorious emerging contaminants that cause great concern. The development of high-efficiency and portable sensors for rapid online monitoring of OPFRs has become the primary demand for the exploration of the environmental migration and transformation of OPFRs. In this work, interestingly, the cataluminescence (CTL) phenomenon of OPFRs is first observed, and an ingenious multidimensional ratiometric CTL sensing strategy is developed for the recognition of multiple OPFRs. Three characteristic ratios are extracted from the multipeak CTL spectral curves based on energy transfer of single Tb/Eu-modified MgO sensing material, and thus a novel three-dimensional (3D) code recognition could be mapped out. This obtained 3D coordinate is found to be a unique characteristic for a given OPFR, just like an exclusive person's ID number, which can successfully discriminate and detect 10 kinds of OPFR vapors, including homologous series and isomers. More importantly, CTL mechanism investigations for OPFRs demonstrate that OPFRs undergo a series of chemical reaction processes, e.g., oxidative pyrolysis and hydroxylation, and different high-energy excited intermediates are generated, which trigger discrepant energy-transfer efficiency toward rare earth ions, leading to multipeak spectral profiles. Briefly, this proposed CTL analytical platform for OPFRs recognition initiates a new sensing principle for the efficient identification of emerging contaminants and shows significant prospects on rapid on-site detection.

7.
Environ Sci Pollut Res Int ; 30(52): 113105-113117, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37848780

RESUMEN

In the context of global high temperature, the harm of greenhouse gases (GHG) emissions caused by frequent forest fires to the environment cannot be ignored. Existing research only calculates the GHG generated by the burning of forest vegetation, ignoring the GHG generated by the fire-driven social rescue activities. Taking the forest fire in Beibei District, Chongqing City, China, as an example, this paper studies and establishes the GHG emission accounting method for the whole process of forest fire from ignition to fire extinguishing through three processes: vegetation burning, rescue transportation, and on-site fire extinguishing. It covers three GHG calculation types: biomass burning, traffic activity level comprehensive energy consumption, and machine energy consumption. Among them, the CO2 produced by the burning of coniferous forest, the support transportation of rescue teams in Yunnan province, and the motorcycle transportation at the fire extinguishing site accounted for a relatively high proportion in the corresponding processes, reaching 12,761.445 t, 118.750 t, and 1056.980 t, respectively. Finally, through data analysis, suggestions on GHG emission reduction related to forest tree regulation and optimization of rescue and fire extinguishing management are put forward, which provides a direction for future research on carbon reduction in the whole process of forest fire events.


Asunto(s)
Incendios , Gases de Efecto Invernadero , Incendios Forestales , China , Bosques , Árboles
8.
Environ Technol ; : 1-9, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37610014

RESUMEN

Proper disinfection treatment is the basic guarantee for safe utilisation of sewage. However, the commonly used disinfection methods are not suitable for nutrients containing reclaimed water. In this work, the microwave disinfection method assisted by a microwave-absorbing material in recycled water samples was investigated. Magnetic corn stalk biochar (MCSB), the microwave absorbing material, was prepared by high temperature carbonisation of corn stalk particles impregnated with ferrous sulfate. Escherichia coli and fecal coliforms were selected as target microorganisms to investigate the disinfection efficiency of MCSB assisted microwave radiation (MW/MCSB). The addition of microwave absorbing materials significantly improves the disinfection effect of water samples. Compared with the microwave radiation (MW) without MCSB, the bactericidal rate by using 107 CFU/L E. coli suspension increased from 63.5% to 100% at 480 W for 30 s after adding 4 g/L MCSB. Besides, the effects of MCSB dosage, microwave power, microwave radiation time, and initial bacterial concentration on disinfection efficiency were explored. Moreover, the bactericidal efficiency for actual sewage samples was also demonstrated by treating the effluent from septic tank sewage. The residual fecal coliforms in treated water samples met China's farmland irrigation water standard (GB 5084-2021). The result indicates that the proposed method of microwave disinfection strengthened by MCSB has a promising application prospect for reclaimed water disinfection.

9.
Nat Commun ; 14(1): 3477, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311800

RESUMEN

The spillover of oxygen species is fundamentally important in redox reactions, but the spillover mechanism has been less understood compared to that of hydrogen spillover. Herein Sn is doped into TiO2 to activate low-temperature (<100 °C) reverse oxygen spillover in Pt/TiO2 catalyst, leading to CO oxidation activity much higher than that of most oxide-supported Pt catalysts. A combination of near-ambient-pressure X-ray photoelectron spectroscopy, in situ Raman/Infrared spectroscopies, and ab initio molecular dynamics simulations reveal that the reverse oxygen spillover is triggered by CO adsorption at Pt2+ sites, followed by bond cleavage of Ti-O-Sn moieties nearby and the appearance of Pt4+ species. The O in the catalytically indispensable Pt-O species is energetically more favourable to be originated from Ti-O-Sn. This work clearly depicts the interfacial chemistry of reverse oxygen spillover that is triggered by CO adsorption, and the understanding is helpful for the design of platinum/titania catalysts suitable for reactions of various reactants.

10.
Environ Monit Assess ; 195(7): 869, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37347444

RESUMEN

Real-time online monitoring of volatile organic compounds (VOCs) in ambient air is crucial for timely and effective human health protection. Here, we developed an innovative, automated two-staged adsorption/thermal desorption gas chromatography/mass spectrometry (GC/MS) system for real-time online monitoring of 117 regulated volatile organic compounds (VOCs). This system comprised a sampling unit, water management trap, two-staged adsorption/thermal desorption unit, thermoelectric coolers (TECs), and a commercial GC/MS system. By implementing a micro-purge-and-trap (MP & T) step and a two-staged adsorption/thermal desorption unit, the presence of interfering substances was effectively minimized. The utilization of a heart-cutting GC, combined with a single MS detector, facilitated the precise separation and detection of 117 C2-C12 VOCs, while circumventing the identification and coelution challenges commonly associated with traditional GC-FID or GC-FID/MS methods. The performance of our newly developed online system was meticulously optimized and evaluated using standard gas mixtures. Under optimal conditions, we achieved impressive results, with R2 values ≥ 0.9946 for the standard linear curves of all 117 VOCs, demonstrating a precision (RSD) ranging from 0.2% to 6.4%. When applied in the field monitoring, the concentration drifts for 10 ppbv standard gas mixtures were 0.01-5.64% within 24 h. Our study developed a system for online monitoring of 117 atmospheric VOCs with relatively high accuracy and robustness.


Asunto(s)
Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Adsorción , Monitoreo del Ambiente/métodos , Sistemas en Línea , Gases/análisis
11.
Analyst ; 148(12): 2818-2824, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37222489

RESUMEN

Detecting hexavalent chromium (Cr(VI)) is important for human health and environmental protection due to its high toxicity, carcinogenicity and persistence, but developing a sensor to selectively detect Cr(VI) remains challenging. Here, we proposed a selective fluorescent sensor for Cr(VI) detection using cetyltrimethylammonium chloride (CTAC) modified N-doped carbon dots (N-CDs-CTAC) synthesized via a post-modification strategy. Specifically, the introduced CTAC molecules could self-assemble into micelles for encapsulating fluorescent N-CDs, causing the aggregation of N-CD particles and then displaying enhanced fluorescence emission owing to the aggregation-induced emission effect. Moreover, the positively charged CTAC can interact with negatively charged Cr(VI) in the form of an anion (Cr2O72-), boosting the ability of the selective recognition of Cr(VI). Thus, a N-CDs-CTAC fluorescent probe was designed to selectively monitor Cr(VI) with an ultralow detection limit down to 40 nM, and was further used for Cr(VI) detection in real environmental samples. The fluorescence quenching mechanism of N-CDs-CTAC by Cr(VI) was attributed to dynamic quenching. The proposed assay opens an avenue for the selective detection of Cr(VI) in the environmental monitoring field.

12.
Environ Res ; 231(Pt 2): 116218, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37224952

RESUMEN

The accumulation of antibiotics in aquatic environments poses a serious threat to human health. Photocatalytic degradation is a promising method for removing antibiotics from water, but its practical implementation requires improvements in photocatalyst activity and recovery. Here, a novel graphite felt-supported MnS/Polypyrrole composite (MnS/PPy/GF) was constructed to achieve effective adsorption of antibiotics, stable loading of photocatalyst, and rapid separation of spatial charge. Systematic characterization of composition, structure and photoelectric properties indicated the efficient light absorption, charge separation and migration of the MnS/PPy/GF, which achieved 86.2% removal of antibiotic ciprofloxacin (CFX), higher than that of MnS/GF (73.7%) and PPy/GF (34.8%). The charge transfer-generated 1O2, energy transfer-generated 1O2, and photogenerated h+ were identified as the dominant reactive species, which mainly attacked the piperazine ring in the photodegradation of CFX by MnS/PPy/GF. The •OH was confirmed to participate in the defluorination of CFX via hydroxylation substitution. The MnS/PPy/GF-based photocatalytic process could ultimately achieve the mineralization of CFX. The facile recyclability, robust stability, and excellent adaptability to actual aquatic environments further confirmed MnS/PPy/GF is a promising eco-friendly photocatalyst for antibiotic pollution control.


Asunto(s)
Ciprofloxacina , Grafito , Humanos , Ciprofloxacina/química , Grafito/química , Polímeros/química , Pirroles/química , Antibacterianos/química
13.
Water Res ; 232: 119662, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36738556

RESUMEN

The spectral fingerprint is a significant concept in nontarget screening of environmental samples to direct identification efforts to relevant and important features. Surface-enhanced Raman scattering (SERS) has long been recognized as an optical method that can provide fingerprint-like chemical information at the single-molecule level. Here, the advanced one-dimensional convolutional neural network (1D-CNN) approach was applied to accurately identify the SERS spectral signature of industrial wastewaters for source tracing. A total of 66,000 SERS spectra were acquired from wastewaters of 22 factories across 10 industrial categories at three excitation wavelengths after data augmentation. The dataset was used to train a 1D-CNN model consisting of three convolutional layers to achieve adequate feature extraction of SERS spectra. As a proof-of-concept, multimixed wastewater samples were used to simulate practical pollution scenarios and evaluate the application potential of the model. The SERS-1D-CNN platform can identify the amount and factory information of wastewaters in multimixed samples, which achieves a recognition accuracy rate of 97.33%. The results suggest that even in a complex and unknown water environment, the 1D-CNN model can accurately identify industrial wastewaters in precollected datasets, exhibiting excellent potential in pollution source tracing.


Asunto(s)
Redes Neurales de la Computación , Aguas Residuales , Nanotecnología , Espectrometría Raman/métodos , Industrias
14.
Water Res ; 231: 119660, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716566

RESUMEN

pH is a crucial factor of microbial nitrification, which often combines with high-strength ammonium to influence nitrogen removal pathway in wastewater treatment. However, the detailed inhibitory mechanisms of pH stress are not sufficiently disclosed yet. In this study, the pH stress effect on nitrification was comprehensively studied by a set of experiments which identified the reactivity of nitrification processes and activity of nitrifiers, the time dependence of inhibition effect and the hybrid pH stress effect with ammonium. The results revealed two distinct inhibitory mechanisms dominating in alkaline and acid ranges. In alkaline range (pH > 8), pH stress causes physiological damages on microorganisms which is named as microbial inhibition. It has the features of less recoverability of nitrifiers, time-dependent inhibition effect and low pH-tolerance of nitrite oxidation bacteria. Free ammonia enhanced microbial inhibition and greatly promoted nitrite accumulation. A novel reactive inhibition mechanism dominated in acid range (pH < 7) was disclosed. It only impedes ammonia oxidation process (AOP) but not impair microbial activity obviously and the effect is time-independent. The mechanism was clarified from H+ transport because AOP involved H+ production. The H+ transport was impeded under acid stress owing to the decrease of pH gradient across cell membrane. The two mechanisms formed a panoramic view of pH stress effect on nitrification advancing the understanding of nitrifier adaptability and nitritation regulation in wastewater treatment processes.


Asunto(s)
Compuestos de Amonio , Nitrificación , Amoníaco/metabolismo , Aguas Residuales , Compuestos de Amonio/química , Reactores Biológicos/microbiología , Concentración de Iones de Hidrógeno , Nitritos/química , Oxidación-Reducción , Nitrógeno/metabolismo
15.
Anal Chim Acta ; 1243: 340809, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36697175

RESUMEN

Tricresyl phosphate (TCP), a notable emerging pollutant with a high bioconcentration factor and biotoxicity, is a typical representative of aryl-organophosphorus flame retardants. The electrochemical and chromatographic technologies used in conventional TCP detection have a variety of drawbacks. Hence, it is crucial to suggest an easy, accurate, and selective method for detecting TCP. In this study, we presented a brand-new method based on NH2-MIL-53(Al) nanoprobe for the direct luminescence assay of TCP. NH2-MIL-53(Al) possessed an excellent crystal structure and superior optical qualities. Notably, the introduction of TCP caused a considerable dampening of the photoluminescence signal of the nanoprobe. The fluorescence response based on static quenching was verified by fluorescence lifetime decay curves. The thermodynamic analysis further concluded that TCP and nanoprobe spontaneously produced non-fluorescent complexes due to hydrophobic interaction. The quenching efficiency (F0-F)/F0 of the nanoprobe and the TCP concentration displayed good linearity in the scope of 0.3-3.0 µM (R2 = 0.996), and the LOD was 0.058 µM under the ideal detection conditions. More significantly, the technique was effectively used to identify TCP in lake and tap water (RSD ≤5.79%), which provided a fresh perspective on how to recognize OPFRs in environmental water.

16.
Anal Methods ; 14(38): 3798-3801, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36124919

RESUMEN

Trace explosive detection has become one of the hottest topics in scientific communities because homeland security is one of the top priorities for countries all around the world. In this work, Ag NPs prepared with different reducing reagents were modified with various halogen ions for the SERS detection of nitroaromatic explosives (2,4-DNT and 2,4,6-TNT). It was proposed that halogen ions probably replaced the surface adsorbates on Ag NPs, i.e., citrate ions, and gave surface access to target analytes, which in turn enhanced the SERS signal. The LOD values for TNT and 2,4-DNT were found to be only 2 femtomoles. Given its facile and the highly sensitive process, the method that we demonstrated can serve as a promising analytical technology for the ultrasensitive SERS detection of nitroaromatic explosives.


Asunto(s)
Sustancias Explosivas , Citratos , Halógenos , Iones
17.
Luminescence ; 37(9): 1541-1546, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35816184

RESUMEN

Rapid ultrasensitive detection of trace polycyclic aromatic hydrocarbons (PAHs) is essential and significant for pollution control due to their hazard, persistence, and the wide distribution in the environment. Therefore, rapid detection of PAHs is critical for controlling pollution and protecting the ecology. Considering the advantages of surface-enhanced Raman spectroscopy (SERS), a simple and reliable SERS method was proposed in this work for detecting PAHs in water. Three chemicals, namely NaCl, KBr, and KI, were chosen to modify Ag nanoparticles (NPs) for phenanthrene (Phe) detection, and Ag NPs modified with KBr (Ag-Br NPs) showed the best SERS response. The mixing sequence and the concentration of KBr were optimized. The addition order of mixing KBr and Ag NPs before Phe solution was the best sequence, and the optimal concentration of KBr was 20 mM. Under optimal conditions, the limits of quantification for Phe, pyrene (Pyr), and anthracene (Ant) were 10-6  M, 10-7  M, and 10-7  M, respectively. Mixed PAHs (Phe, Pyr, and Ant) in spiked water samples were identified and quantified successfully. The proposed method has good application prospects in environmental pollution monitoring.


Asunto(s)
Nanopartículas del Metal , Hidrocarburos Policíclicos Aromáticos , Antracenos , Bromuros , Halógenos , Nanopartículas del Metal/química , Compuestos de Potasio , Pirenos , Plata/química , Espectrometría Raman/métodos , Agua
18.
Sci Total Environ ; 836: 155617, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35525354

RESUMEN

Triphenyl phosphate (TPHP), a typical kind of organophosphorus flame retardants (OPFRs) with aryl groups, has been recognized as an emerging contaminant that causes environmental and health hazards. It is a pervasive threat that can be frequently detected in the environment and living organisms. Hence, establishing an efficient analytical method for TPHP is an urgent issue. In this work, a heteropolyacid (HPA)-luminol chemiluminescence strategy coupled with UV-assisted persulfate (PS) activation was proposed for the sensitive and selective detection of TPHP. The UV-assisted PS oxidation pretreatment could decompose the water-insoluble TPHP into smaller orthophosphates, which were further converted into HPA with the subsequently introduced vanadium­molybdenum acid. The formed HPA served as a catalyst to oxidize luminol, and strong chemiluminescence at 425 nm was generated immediately. Furthermore, the degradation process of TPHP and chemiluminescence mechanism were also investigated. The results demonstrated that some reactive oxygen radicals such as SO4-, OH, 1O2, and O2-, were involved in the degradation and chemiluminescence reaction. Notably, this proposed chemiluminescence analytical strategy realized a highly sensitive detection for TPHP, and granted the limit of detection down to 0.38 ppt. This study provides an attractive perspective for the detection of emerging OPFRs.


Asunto(s)
Retardadores de Llama , Luminiscencia , Luminol , Organofosfatos
19.
Anal Bioanal Chem ; 414(17): 4977-4985, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35606451

RESUMEN

Phenotyping of bacteria with vibrational spectroscopy has caught much attention in bacteria-related research. It is known that many factors could affect this process. Among them, solution pH maintenance is crucial, yet its impact on the bacterial SERS spectra is surprisingly neglected. In this work, we focused on two situations related to pH maintenance: the effect of the same buffer on the SERS spectra of bacteria under different pH values, and the influence of different buffers on the SERS spectra of bacteria under the same pH value. Specifically, Britton-Robison (BR) buffer was used to evaluate the effect of pH value on bacteria SERS spectra thanks to its wide pH range. Four different buffers, namely BR buffer, acetate buffer, phosphate buffer, and carbonate buffer, were used to illustrate the impact of buffer types on SERS spectra of bacteria. The results showed that the intensity and number of characteristic peaks of the SERS spectra of Gram-negative (G -) bacteria changed more significantly than Gram-positive (G +) bacteria with the change of pH value. Furthermore, compared with phosphate buffer and carbonate buffer, BR buffer could bring more characteristic SERS bands with better reproducibility, but slightly inferior to acetate buffer. In conclusion, the influence of the pH and types of the buffer on the SERS spectra of bacteria are worthy of further discussion.


Asunto(s)
Bacterias , Espectrometría Raman , Bacterias/química , Concentración de Iones de Hidrógeno , Fosfatos , Reproducibilidad de los Resultados , Espectrometría Raman/métodos
20.
Luminescence ; 37(7): 1145-1151, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35481694

RESUMEN

Surface-enhanced Raman scattering (SERS) is a powerful tool for constructing biomolecular fingerprints, which play a vital role in differentiation of bacteria. Due to the rather subtle differences in the SERS spectra among different bacteria, artificial intelligence is usually adopted and enormous amounts of spectral data are required to improve the differentiation efficiency. However, in many cases, large volume data acquisition on bacteria is not only technical difficult but labour intensive. It is known that surface modification of SERS nanomaterials can bring additional dimensionality (difference) of the SERS fingerprints. Here in this work, we show that the concept could be used to improve the bacteria differentiation efficiency. Ag NPs were modified with 11-mercaptoundecanoic acid, 11-mercapto-1-undecanol, and 1-dodecanethiol to provide additional dimensionality. The modified NPs then were mixed with cell lysate from different strains of Bacillus cereus (B. cereus). Even by applying a simple PCA process to the resulting SERS spectra data, all the three modified Ag NPs showed superior differentiation results compared with bare Ag NPs, which could only separate Staphylococcus aureus (S. aureus) and B. cereus. It is believed that the multidimensional SERS could find great potential in bacteria differentiation.


Asunto(s)
Nanopartículas del Metal , Espectrometría Raman , Inteligencia Artificial , Bacillus cereus , Plata , Espectrometría Raman/métodos , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...