Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Dyn ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38459937

RESUMEN

BACKGROUND: Maturation of the mouse is accompanied by the increase in heart rate. However, the mechanisms underlying this process remain unclear. We performed an action potentials (APs) recordings in mouse sinoatrial node (SAN) true pacemaker cells and in silico analysis to clarify the mechanisms underlying pre-postnatal period heart rate changes. RESULTS: The APs of true pacemaker cells at different stages had similar configurations and dV/dtmax values. The cycle length, action potential duration (APD90 ), maximal diastolic potential (MDP), and AP amplitude decreased, meanwhile the velocity of diastolic depolarization (DDR) increased from E12.5 stage to adult. Using a pharmacological approach we found that in SAN true pacemaker cells ivabradine reduces the DDR and the cycle length significantly stronger in E12.5 than in newborn and adult mice, whereas the effects of Ni2+ and nifedipine were significantly stronger in adult mice. Computer simulations further suggested that the density of the hyperpolarization-activated pacemaker сurrent (If ) decreased during development, whereas transmembrane and intracellular Ca2+ flows increased. CONCLUSIONS: The ontogenetic decrease in IK1 density from E12.5 to adult leads to depolarization of MDP to the voltage range in which calcium currents are activated, thereby shifting the balance from the "membrane-clock" to the "calcium-clock."

2.
Can J Physiol Pharmacol ; 102(5): 331-341, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38118123

RESUMEN

Extracellular potassium concentration might modify electrophysiological properties in the border zone of ischemic myocardium. We evaluated the depolarization and repolarization characteristics across the ischemic-normal border under [K+] variation. Sixty-four-lead epicardial mapping was performed in 26 rats ([K+] 2.3-6.4 mM) in a model of acute ischemia/reperfusion. The animals with [K+] < 4.7 mM (low-normal potassium) had an ischemic zone with ST-segment elevation and activation delay, a border zone with ST-segment elevation and no activation delay, and a normal zone without electrophysiological abnormalities. The animals with [K+] >4.7 mM (normal-high potassium) had only the ischemic and normal zones and no transitional area. Activation-repolarization intervals and local conduction velocities were inversely associated with [K+] in linear regression analysis with adjustment for the zone of myocardium. The reperfusion extrasystolic burden (ESB) was greater in the low-normal as compared to normal-high potassium animals. Ventricular tachycardia/fibrillation incidence did not differ between the groups. In patch-clamp experiments, hypoxia shortened action potential duration at 5.4 mM but not at 1.3 mM of [K+]. IK(ATP) current was lower at 1.3 mM than at 5.4 mM of [K+]. We conclude that the border zone formation in low-normal [K+] was associated with attenuation of IK(ATP) response to hypoxia and increased reperfusion ESB.


Asunto(s)
Potenciales de Acción , Isquemia Miocárdica , Potasio , Animales , Potasio/sangre , Potasio/metabolismo , Masculino , Ratas , Isquemia Miocárdica/fisiopatología , Isquemia Miocárdica/sangre , Isquemia Miocárdica/metabolismo , Potenciales de Acción/fisiología , Daño por Reperfusión Miocárdica/sangre , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Ratas Wistar
3.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569306

RESUMEN

Melatonin has been reported to cause myocardial electrophysiological changes and prevent ventricular tachycardia or fibrillation (VT/VF) in ischemia and reperfusion. We sought to identify electrophysiological targets responsible for the melatonin antiarrhythmic action and to explore whether melatonin receptor-dependent pathways or its antioxidative properties are essential for these effects. Ischemia was induced in anesthetized rats given a placebo, melatonin, and/or luzindole (MT1/MT2 melatonin receptor blocker), and epicardial mapping with reperfusion VT/VFs assessment was performed. The oxidative stress assessment and Western blotting analysis were performed in the explanted hearts. Transmembrane potentials and ionic currents were recorded in cardiomyocytes with melatonin and/or luzindole application. Melatonin reduced reperfusion VT/VF incidence associated with local activation time in logistic regression analysis. Melatonin prevented ischemia-related conduction slowing and did not change the total connexin43 (Cx43) level or oxidative stress markers, but it increased the content of a phosphorylated Cx43 variant (P-Cx43368). Luzindole abolished the melatonin antiarrhythmic effect, slowed conduction, decreased total Cx43, protein kinase Cε and P-Cx43368 levels, and the IK1 current, and caused resting membrane potential (RMP) depolarization. Neither melatonin nor luzindole modified INa current. Thus, the antiarrhythmic effect of melatonin was mediated by the receptor-dependent enhancement of impulse conduction, which was associated with Cx43 phosphorylation and maintaining the RMP level.


Asunto(s)
Conexina 43 , Melatonina , Ratas , Animales , Conexina 43/metabolismo , Receptores de Melatonina/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/prevención & control , Miocitos Cardíacos/metabolismo
4.
Front Physiol ; 14: 1035032, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755793

RESUMEN

Background: Repolarization prolongation can be the earliest electrophysiological change in ischemia, but its role in arrhythmogenesis is unclear. The aim of the present study was to evaluate the early ischemic action potential duration (APD) prolongation concerning its causes, expression in ECG and association with early ischemic ventricular fibrillation (phase 1A VF). Methods: Coronary occlusion was induced in 18 anesthetized pigs, and standard 12 lead ECG along with epicardial electrograms were recorded. Local activation time (AT), end of repolarization time (RT), and activation-repolarization interval (ARIc) were determined as dV/dt minimum during QRS-complex, dV/dt maximum during T-wave, and rate-corrected RT-AT differences, respectively. Patch-clamp studies were done in enzymatically isolated porcine cardiomyocytes. IK(ATP) activation and Ito1 inhibition were tested as possible causes of the APD change. Results: During the initial period of ischemia, a total of 11 pigs demonstrated maximal ARIc prolongation >10 ms at 1 and/or 2.5 min of occlusion (8 and 6 cases at 1 and 2.5 min, respectively) followed by typical ischemic ARIc shortening. The maximal ARIc across all leads was associated with VF development (OR 1.024 95% CI 1.003-1.046, p = 0.025) and maximal rate-corrected QT interval (QTc) (B 0.562 95% CI 0.346-0.775, p < 0.001) in logistic and linear regression analyses, respectively. Phase 1A VF incidence was associated with maximal QTc at the 2.5 min of occlusion in ROC curve analysis (AUC 0.867, p = 0.028) with optimal cut-off 456 ms (sensitivity 1.00, specificity 0.778). The pigs having maximal QTc at 2.5 min more and less than 450 ms significantly differed in phase 1A VF incidence in Kaplan-Meier analysis (log-rank p = 0.007). In the patch-clamp experiments, 4-aminopyridine did not produce any effects on the APD; however, pinacidil activated IK(ATP) and caused a biphasic change in the APD with initial prolongation and subsequent shortening. Conclusion: The transiently prolonged repolarization during the initial period of acute ischemia was expressed in the prolongation of the maximal QTc interval in the body surface ECG and was associated with phase 1A VF. IK(ATP) activation in the isolated cardiomyocytes reproduced the biphasic repolarization dynamics observed in vivo, which suggests the probable role of IK(ATP) in early ischemic arrhythmogenesis.

5.
J Pineal Res ; 73(1): e12798, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35384053

RESUMEN

Melatonin treatment was reported to reduce the risk of cardiac arrhythmias, and crucial for this antiarrhythmic action was the effect of melatonin on activation spread. The aim of the present study was evaluation of the mechanisms of this activation enhancement. Experiments were performed in a total of 123 control and melatonin-treated (10 mg/kg, daily, for 7 days) male Wistar rats. In epicardial mapping studies (64 leads, interlead distance 0.5 mm) in the anesthetized animals, activation times (ATs) were determined in each lead as dV/dt minimum during QRS complex under sinus rhythm. Epicardial pacing was performed to measure conduction velocity (CV) across the mapped area. Average left ventricular ATs were shorter in the treated animals as compared to the controls, whereas the minimal epicardial ATs indicating the duration of activation propagation via the ventricular conduction system did not differ between the groups. CV was higher in the treated groups indicating that melatonin affected conduction via contractile myocardium The area of Cx43-derived fluorescence, as well as the expression of Cx43 protein, was similar in ventricles in the control and melatonin-treated groups. Expression of Gja1 gene transcripts encoding Cx43, was increased in the last group. An uncoupling agent octanol modified myocardial conduction properties (time of activation, action potential upstroke velocity, passive electrotonic phase duration) similarly in both groups. On the other hand, the expression of both Scn5a gene transcripts encoding Nav1.5 proteins, as well as peak density of transmembrane sodium current were increased in the ventricular myocytes from the melatonin-treated animals. Thus, a week-long melatonin treatment caused the increase of conduction velocity via enhancement of sodium channel proteins expression and increase of sodium current in the ventricular myocytes.


Asunto(s)
Conexina 43 , Sistema de Conducción Cardíaco , Melatonina , Canal de Sodio Activado por Voltaje NAV1.5 , Animales , Conexina 43/genética , Corazón/fisiología , Sistema de Conducción Cardíaco/efectos de los fármacos , Masculino , Melatonina/farmacología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Ratas , Ratas Wistar , Sodio , Regulación hacia Arriba
6.
J Exp Biol ; 220(Pt 24): 4589-4599, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28982967

RESUMEN

The mechanisms of action potential (AP) generation in the myoepithelial cells of the tunicate heart are not yet well understood. Here, an attempt was made to elucidate these mechanisms by analyzing the effects of specific blockers of K+, Na+ and Ca2+ currents on the configuration of transmembrane APs and their frequency in the spontaneously beating ascidian heart. In addition, an immunocytochemical analysis of heart myoepithelial cells was performed. Staining with anti-FMRF-amide and anti-tubulin antibodies did not reveal any nerve elements within the heart tube. Treatment with 1 mmol l-1 TEA (IK blocker) resulted in depolarization of heart cell sarcolemma by 10 mV, and inhibition of APs generation was recorded after 3 min of exposure. Prior to this moment, the frequency of AP generation in a burst decreased from 16-18 to 2 beats min-1 owing to prolongation of the diastole. After application of ivabradine (3 or 10 µmol l-1), the spontaneous APs generation frequency decreased by 24%. Based on these results and published data, it is concluded that the key role in the automaticity of the ascidian heart is played by the outward K+ currents, Na+ currents, activated hyperpolarization current If and a current of unknown nature IX.


Asunto(s)
Potenciales de Acción , Corazón/fisiología , Urocordados/química , Animales , Bloqueadores de los Canales de Calcio/farmacología , Polaridad Celular , Inmunohistoquímica , Potenciales de la Membrana , Bloqueadores de los Canales de Potasio/farmacología , Sarcolema/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Urocordados/efectos de los fármacos , Urocordados/metabolismo , Urocordados/fisiología
7.
Physiol Rep ; 3(7)2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26156968

RESUMEN

The physiological role of Ito has yet to be clarified. The goal of this study is to investigate the possible contribution of the transient outward current (Ito) on the generation of transmembrane action potentials (APs) and the sensitivity of mouse sinoauricular node (SAN) cells to a 4-aminopyridine (4AP) as Ito blocker. The electrophysiological identification of cells was performed in the sinoauricular node artery area (nstrips = 38) of the subendocardial surface using microelectrode technique. In this study, for the first time, it was observed that dependence duration of action potential at the level of 20% repolarization (APD20) level under a 4AP concentration in the pacemaker SAN and auricular cells corresponds to a curve predicted by Hill's equation. APD20 raised by 70% and spike duration of AP increased by 15-25%, when 4AP concentration was increased from 0.1 to 5.0 mmol/L. Auricular cells were found to be more sensitive to 4AP than true pacemaker cells. This was accompanied by a decrease in the upstroke velocity as compared to the control. Our data and previous findings in the literature lead us to hypothesize that the 4AP-sensitive current participates in the repolarization formation of pacemaker and auricular type cells. Thus, study concerning the inhibitory effects of lidocaine and TTX on APD20 can explain the phenomenon of the decrease in upstroke velocity, which, for the first time, was observed after exposure to 4AP. Duration of AP at the level of 20% repolarization (APD20) under a 4-AP concentration 0.5 mmol/L in the true pacemaker cells lengthen by 60-70% with a control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...