Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14287, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907001

RESUMEN

To acquire the ability to fertilize the egg, mammalian spermatozoa must undergo a series of changes occurring within the highly synchronized and specialized environment of the female reproductive tract, collectively known as capacitation. In an attempt to replicate this process in vitro, various culture media for mouse sperm were formulated over the past decades, sharing a similar overall composition but differing mainly in ion concentrations and metabolic substrates. The widespread use of the different media to study the mechanisms of capacitation might hinder a comprehensive understanding of this process, as the medium could become a confounding variable in the analysis. In this context, the present side-by-side study compares the influence of four commonly used culture media (FD, HTF and two TYH versions) on mouse sperm capacitation. We evaluated the induction of protein kinase A phosphorylation pathway, motility, hyperactivation and acrosome reaction. Additionally, in vitro fertilization and embryo development were also assessed. By analyzing these outcomes in two mouse colonies with different reproductive performance, our study provides critical insights to improve the global understanding of sperm function. The results obtained highlight the importance of considering variations in medium composition, and their potential implications for the future interpretation of results.


Asunto(s)
Reacción Acrosómica , Medios de Cultivo , Fertilización In Vitro , Capacitación Espermática , Espermatozoides , Animales , Capacitación Espermática/efectos de los fármacos , Masculino , Ratones , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Espermatozoides/metabolismo , Fertilización In Vitro/métodos , Femenino , Reacción Acrosómica/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Fosforilación , Fertilización , Desarrollo Embrionario/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
2.
Front Cell Dev Biol ; 11: 1166232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397249

RESUMEN

Sperm are terminally differentiated cells that lack most of the membranous organelles, resulting in a high abundance of ether glycerolipids found across different species. Ether lipids include plasmalogens, platelet activating factor, GPI-anchors and seminolipid. These lipids play important roles in sperm function and performance, and thus are of special interest as potential fertility markers and therapeutic targets. In the present article, we first review the existing knowledge on the relevance of the different types of ether lipids for sperm production, maturation and function. To further understand ether-lipid metabolism in sperm, we then query available proteomic data from highly purified sperm, and produce a map of metabolic steps retained in these cells. Our analysis pinpoints the presence of a truncated ether lipid biosynthetic pathway that would be competent for the production of precursors through the initial peroxisomal core steps, but devoid of subsequent microsomal enzymes responsible for the final synthesis of all complex ether-lipids. Despite the widely accepted notion that sperm lack peroxisomes, the thorough analysis of published data conducted herein identifies nearly 70% of all known peroxisomal resident proteins as part of the sperm proteome. In view of this, we highlight open questions related to lipid metabolism and possible peroxisomal functions in sperm. We propose a repurposed role for the truncated peroxisomal ether-lipid pathway in detoxification of products from oxidative stress, which is known to critically influence sperm function. The likely presence of a peroxisomal-derived remnant compartment that could act as a sink for toxic fatty alcohols and fatty aldehydes generated by mitochondrial activity is discussed. With this perspective, our review provides a comprehensive metabolic map associated with ether-lipids and peroxisomal-related functions in sperm and offers new insights into potentially relevant antioxidant mechanisms that warrant further research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...