Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Toxics ; 10(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36006106

RESUMEN

A risk assessment (RA) was conducted to estimate the risk associated with methylmercury (MeHg) exposure of vulnerable European populations, using Human Biomonitoring (HBM) data. This RA was performed integrating published data from European HBM surveys and earlier EFSA approaches (EFSA 2012). Children/adolescents (3 to 17 years old) and women of childbearing age (18 to 50 years old) were selected as relevant study population groups for this RA. Two types of HBM datasets were selected: HBM studies (n = 18) with mercury (Hg) levels (blood and hair, total Hg and/or MeHg) in the general population in different EU countries and the DEMOCOPHES harmonized study in child-mother pairs (hair, total Hg) in 17 EU countries as a reference. Two approaches were included in the RA strategy: the first one was based on estimations of the fraction of children/adolescents and women of childbearing age, respectively, from the EU general population exceeding the HBM-I value established by the German Human Biomonitoring Commission, measured as Hazard Quotients (HQ); and the second approach was based on estimations of the fraction of the two population groups exceeding the Tolerable Weekly Intake (TWI) (or their equivalent to Tolerable Daily Intake (TDI)) defined by EFSA in 2012. The HQ approach showed that for both groups, the risk varies across EU countries and that some EU areas are close to or exceeding the exposure guidance values. This is the case of Spain and Portugal, which showed the highest HQ (GM and/or P95), probably due to their higher fish consumption. Results from the EFSA approach show that hair values of children/adolescents and women of childbearing age (both in selected HBM studies and in DEMOCOPHES study) are below the TDI of 1.9 µg/g; therefore, in general, the European population does not exceed the daily average/intake dose for MeHg and/or Hg. A possible risk underestimation was identified in our assessment since for many studies no data on P95 were available, causing loss of relevant information for risk characterization on the upper bound. In addition, data from other European countries also with high seafood consumption, such as France, Greece or Iceland, were not available. For this reason, further RA refinement is needed with harmonized and more widespread HBM data to account for differences in European exposure and associated risks, so that interventions to protect vulnerable citizens, can be applied.

2.
Toxics ; 10(6)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35736921

RESUMEN

The risk assessment of pesticide residues in food is a key priority in the area of food safety. Most jurisdictions have implemented pre-marketing authorization processes, which are supported by prospective risk assessments. These prospective assessments estimate the expected residue levels in food combining results from residue trials, resembling the pesticide use patterns, with food consumption patterns, according to internationally agreed procedures. In addition, jurisdictions such as the European Union (EU) have implemented large monitoring programs, measuring actual pesticide residue levels in food, and are supporting large-scale human biomonitoring programs for confirming the actual exposure levels and potential risk for consumers. The organophosphate insecticide chlorpyrifos offers an interesting case study, as in the last decade, its acceptable daily intake (ADI) has been reduced several times following risk assessments by the European Food Safety Authority (EFSA). This process has been linked to significant reductions in the use authorized in the EU, reducing consumers' exposure progressively, until the final ban in 2020, accompanied by setting all EU maximum residue levels (MRL) in food at the default value of 0.01 mg/kg. We present a comparison of estimates of the consumer's internal exposure to chlorpyrifos based on the urinary marker 3,5,6-trichloro-2-pyridinol (TCPy), using two sources of monitoring data: monitoring of the food chain from the EU program and biomonitoring of European citizens from the HB4EU project, supported by a literature search. Both methods confirmed a drastic reduction in exposure levels from 2016 onwards. The margin of exposure approach is then used for conducting retrospective risk assessments at different time points, considering the evolution of our understanding of chlorpyrifos toxicity, as well as of exposure levels in EU consumers following the regulatory decisions. Concerns are presented using a color code, and have been identified for almost all studies, particularly for the highest exposed group, but at different levels, reaching the maximum level, red code, for children in Cyprus and Israel. The assessment uncertainties are highlighted and integrated in the identification of levels of concern.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA