Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 388(2): 670-687, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38129126

RESUMEN

Inflammatory mechanisms and oxidative stress seem to contribute to the pathogenesis of hypertension. ITH13001 is a melatonin-phenyl-acrylate hybrid that moderately induces the antioxidant transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) and has a potent oxidant scavenging effect compared with other derivatives of its family. Here we investigated the effect of ITH13001 on hypertension and the associated cardiovascular alterations. Angiotensin II (AngII)-infused mice were treated with ITH13001 (1 mg/kg per day, i.p.) for 2 weeks. The ITH13001 treatment prevented: 1) the development of hypertension, cardiac hypertrophy, and increased collagen and B-type natriuretic peptide (Bnp) expression in the heart; 2) the reduction of elasticity, incremental distensibility, fenestrae area, intraluminal diameter, and endothelial cell number in mesenteric resistance arteries (MRA); 3) the endothelial dysfunction in aorta and MRA; 4) the plasma and cardiovascular oxidative stress and the reduced aortic nitric oxide (NO) bioavailability; 5) the increased cardiac levels of the cytokines interleukin (IL)-1ß, IL-6, and C-C motif chemokine ligand 2 (Ccl2), the T cell marker cluster of differentiation 3 (Cd3), the inflammasome NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3), the proinflammatory enzymes inducible nitric oxide synthase (iNOS) and COX-2, the toll-like receptor 4 (TLR4) adapter protein myeloid differentiation primary response 88 (MyD88), and the nuclear factor kappa B (NF-κB) subunit p65; 6) the greater aortic expression of the cytokines tumor necrosis factor alpha (Tnf-α), Ccl2 and IL-6, Cd3, iNOS, MyD88, and NLRP3. Although ITH13001 increased nuclear Nrf2 levels and heme oxygenase 1 (HO-1) expression in vascular smooth muscle cells, both cardiac and vascular Nrf2, Ho-1, and NADPH quinone dehydrogenase 1 (Nqo1) levels remained unmodified irrespective of AngII infusion. Summarizing, ITH13001 improved hypertension-associated cardiovascular alterations independently of Nrf2 pathway activation, likely due to its direct antioxidant and anti-inflammatory properties. Therefore, ITH13001 could be a useful therapeutic strategy in patients with resistant hypertension. SIGNIFICANCE STATEMENT: Despite the existing therapeutic arsenal, only half of the patients treated for hypertension have adequately controlled blood pressure; therefore, the search for new compounds to control this pathology and the associated damage to end-target organs (cerebral, cardiac, vascular, renal) is of particular interest. The present study demonstrates that a new melatonin derivative, ITH13001, prevents hypertension development and the associated cardiovascular alterations due to its antioxidant and anti-inflammatory properties, making this compound a potential candidate for treatment of resistant hypertensive patients.


Asunto(s)
Hipertensión , Melatonina , Humanos , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Angiotensina II , Melatonina/farmacología , Melatonina/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Interleucina-6/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipertensión/prevención & control , FN-kappa B/metabolismo , Citocinas/metabolismo , Antiinflamatorios/farmacología
2.
Front Pharmacol ; 14: 1058488, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937865

RESUMEN

Introduction: Vascular oxidative stress and inflammation play an important role in the pathogenesis of cardiovascular diseases (CVDs). The proinflammatory cytokine Interleukin-1ß (IL-1ß) participates in the vascular inflammatory and oxidative responses and influences vascular smooth muscle cells (VSMC) phenotype and function, as well as vascular remodelling in cardiovascular diseases. The Toll-like receptor 4 (TLR4) is also involved in the inflammatory response in cardiovascular diseases. A relationship between Interleukin-1ß and Toll-like receptor 4 pathway has been described, although the exact mechanism of this interaction remains still unknown. Moreover, the oxidative stress sensitive transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) promotes the transcription of several antioxidant and anti-inflammatory genes. Nuclear factor-erythroid 2-related factor 2 activators have shown to possess beneficial effects in cardiovascular diseases in which oxidative stress and inflammation are involved, such as hypertension and atherosclerosis; however, the molecular mechanisms are not fully understood. Here, we analysed the role of Toll-like receptor 4 in the oxidative and inflammatory effects of Interleukin-1ß as well as whether nuclear factor-erythroid 2-related factor 2 activation contributes to vascular alterations by modulating these effects. Materials: For this purpose, vascular smooth muscle cells and mice aortic segments stimulated with Interleukin-1ß were used. Results: Interleukin-1ß induces MyD88 expression while the Toll-like receptor 4 inhibitor CLI-095 reduces the Interleukin-1ß-elicited COX-2 protein expression, reactive oxygen species (ROS) production, vascular smooth muscle cells migration and endothelial dysfunction. Additionally, Interleukin-1ß increases nuclear factor-erythroid 2-related factor 2 nuclear translocation and expression of its downstream proteins heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 and superoxide dismutase-2, by an oxidative stress-dependent mechanism; moreover, Interleukin-1ß reduces the expression of the nuclear factor-erythroid 2-related factor 2 inhibitor Keap1. The nuclear factor-erythroid 2-related factor 2 activator tert-butylhydroquinone (tBHQ) reduces the effects of Interleukin-1ß on the increased reactive oxygen species production and the expression of the proinflammatory markers (p-p38, p-JNK, p-c-Jun, COX-2), the increased cell proliferation and migration and prevents the Interleukin-1ß-induced endothelial dysfunction in mice aortas. Additionally, tert-butylhydroquinone also reduces the increased MyD88 expression, NADPHoxidase activity and cell migration induced by lipopolysaccharide. Conclusions: In summary, this study reveals that Toll-like receptor 4 pathway contributes to the prooxidant and proinflammatory Interleukin-1ß-induced effects. Moreover, activation of nuclear factor-erythroid 2-related factor 2 prevents the deleterious effects of Interleukin-1ß, likely by reducing Toll-like receptor 4-dependent pathway. Although further research is needed, the results are promising as they suggest that nuclear factor-erythroid 2-related factor 2 activators might protect against the oxidative stress and inflammation characteristic of cardiovascular diseases.

3.
Sci Rep ; 9(1): 16461, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31712626

RESUMEN

Endothelin-1 (ET-1) is an important modulator of the vascular tone and a proinflammatory molecule that contributes to the vascular damage observed in hypertension. Peroxisome-proliferator activated receptors-γ (PPARγ) agonists show cardioprotective properties by decreasing inflammatory molecules such as COX-2 and reactive oxygen species (ROS), among others. We investigated the possible modulatory effect of PPARγ activation on the vascular effects of ET-1 in hypertension. In spontaneously hypertensive rats (SHR), but not in normotensive rats, ET-1 enhanced phenylephrine-induced contraction through ETA by a mechanism dependent on activation of TP receptors by COX-2-derived prostacyclin and reduction in NO bioavailability due to enhanced ROS production. In SHR, the PPARγ agonist pioglitazone (2.5 mg/Kg·day, 28 days) reduced the increased ETA levels and increased those of ETB. After pioglitazone treatment of SHR, ET-1 through ETB decreased ROS levels that resulted in increased NO bioavailability and diminished phenylephrine contraction. In vascular smooth muscle cells from SHR, ET-1 increased ROS production through AP-1 and NFκB activation, leading to enhanced COX-2 expression. These effects were blocked by pioglitazone. In summary, in hypertension, pioglitazone shifts the vascular ETA/ETB ratio, reduces ROS/COX-2 activation and increases NO availability; these changes explain the effect of ET-1 decreasing phenylephrine-induced contraction.


Asunto(s)
Endotelina-1/metabolismo , Hipertensión/tratamiento farmacológico , Hipoglucemiantes/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Pioglitazona/farmacología , Animales , Hipertensión/metabolismo , Hipertensión/patología , Masculino , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Estrés Oxidativo/efectos de los fármacos , PPAR gamma/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
4.
Front Immunol ; 10: 458, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30936871

RESUMEN

Non-typeable Haemophilus influenzae (NTHi) causes persistent respiratory infections in patients with chronic obstructive pulmonary disease (COPD), probably linked to its capacity to invade and reside within pneumocytes. In the alveolar fluid, NTHi is in contact with pulmonary surfactant, a lipoprotein complex that protects the lung against alveolar collapse and constitutes the front line of defense against inhaled pathogens and toxins. Decreased levels of surfactant phospholipids have been reported in smokers and patients with COPD. The objective of this study was to investigate the effect of surfactant phospholipids on the host-pathogen interaction between NTHi and pneumocytes. For this purpose, we used two types of surfactant lipid vesicles present in the alveolar fluid: (i) multilamellar vesicles (MLVs, > 1 µm diameter), which constitute the tensioactive material of surfactant, and (ii) small unilamellar vesicles (SUVs, 0.1 µm diameter), which are generated after inspiration/expiration cycles, and are endocytosed by pneumocytes for their degradation and/or recycling. Results indicated that extracellular pulmonary surfactant binds to NTHi, preventing NTHi self-aggregation and inhibiting adhesion of NTHi to pneumocytes and, consequently, inhibiting NTHi invasion. In contrast, endocytosed surfactant lipids, mainly via the scavenger receptor SR-BI, did not affect NTHi adhesion but inhibited NTHi invasion by blocking bacterial uptake in pneumocytes. This blockade was made possible by inhibiting Akt phosphorylation and Rac1 GTPase activation, which are signaling pathways involved in NTHi internalization. Administration of the hydrophobic fraction of lung surfactant in vivo accelerated bacterial clearance in a mouse model of NTHi pulmonary infection, supporting the notion that the lipid component of lung surfactant protects against NTHi infection. These results suggest that alterations in surfactant lipid levels in COPD patients may increase susceptibility to infection by this pathogen.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Infecciones por Haemophilus/prevención & control , Haemophilus influenzae/efectos de los fármacos , Surfactantes Pulmonares/farmacología , Células Epiteliales Alveolares/metabolismo , Animales , Adhesión Bacteriana/efectos de los fármacos , Endocitosis/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Vesículas Extracelulares/fisiología , Infecciones por Haemophilus/inmunología , Haemophilus influenzae/aislamiento & purificación , Haemophilus influenzae/fisiología , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas , Masculino , Ratones , Neuropéptidos/antagonistas & inhibidores , Otitis Media/microbiología , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Surfactantes Pulmonares/inmunología , Ratas , Ratas Sprague-Dawley , Receptores Depuradores/antagonistas & inhibidores , Receptores Depuradores/fisiología , Organismos Libres de Patógenos Específicos , Proteína de Unión al GTP rac1/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...