Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 20(1): 468, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046015

RESUMEN

BACKGROUND: Desiccation tolerant Selaginella species evolved to survive extreme environmental conditions. Studies to determine the mechanisms involved in the acquisition of desiccation tolerance (DT) have focused on only a few Selaginella species. Due to the large diversity in morphology and the wide range of responses to desiccation within the genus, the understanding of the molecular basis of DT in Selaginella species is still limited. RESULTS: Here we present a reference transcriptome for the desiccation tolerant species S. sellowii and the desiccation sensitive species S. denticulata. The analysis also included transcriptome data for the well-studied S. lepidophylla (desiccation tolerant), in order to identify DT mechanisms that are independent of morphological adaptations. We used a comparative approach to discriminate between DT responses and the common water loss response in Selaginella species. Predicted proteomes show strong homology, but most of the desiccation responsive genes differ between species. Despite such differences, functional analysis revealed that tolerant species with different morphologies employ similar mechanisms to survive desiccation. Significant functions involved in DT and shared by both tolerant species included induction of antioxidant systems, amino acid and secondary metabolism, whereas species-specific responses included cell wall modification and carbohydrate metabolism. CONCLUSIONS: Reference transcriptomes generated in this work represent a valuable resource to study Selaginella biology and plant evolution in relation to DT. Our results provide evidence of convergent evolution of S. sellowii and S. lepidophylla due to the different gene sets that underwent selection to acquire DT.


Asunto(s)
Adaptación Fisiológica/genética , Deshidratación/genética , Deshidratación/fisiopatología , Selaginellaceae/genética , Selaginellaceae/fisiología , Especificidad de la Especie , Estrés Fisiológico/genética , Evolución Biológica , Perfilación de la Expresión Génica , Variación Genética
2.
Biotechnol Biofuels ; 13: 119, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670406

RESUMEN

BACKGROUND: The use of cyanobacteria and microalgae as cell factories to produce biofuels and added-value bioproducts has received great attention during the last two decades. Important investments have been made by public and private sectors to develop this field. However, it has been a challenge to develop a viable and cost-effective platform for cultivation of cyanobacteria and microalgae under outdoor conditions. Dealing with contamination caused by bacteria, weedy algae/cyanobacteria and other organisms is a major constraint to establish effective cultivation processes. RESULTS: Here, we describe the implementation in the cyanobacterium Synechococcus elongatus PCC 7942 of a phosphorus selective nutrition system to control biological contamination during cultivation. The system is based on metabolic engineering of S. elongatus to metabolize phosphite, a phosphorus source not normally metabolized by most organisms, by expressing a bacterial phosphite oxidoreductase (PtxD). Engineered S. elongatus strains expressing PtxD grow at a similar rate on media supplemented with phosphite as the non-transformed control supplemented with phosphate. We show that when grown in media containing phosphite as the sole phosphorus source in glass flasks, the engineered strain was able to grow and outcompete biological contaminants even when the system was intentionally inoculated with natural competitors isolated from an irrigation canal. The PtxD/phosphite system was successfully used for outdoor cultivation of engineered S. elongatus in 100-L cylindrical reactors and 1000-L raceway ponds, under non-axenic conditions and without the need of sterilizing containers and media. Finally, we also show that the PtxD/phosphite system can be used as selectable marker for S. elongatus PCC 7942 transgenic strains selection, eliminating the need of antibiotic resistance genes. CONCLUSIONS: Our results suggest that the PtxD/phosphite system is a stable and sufficiently robust strategy to control biological contaminants without the need of sterilization or other complex aseptic procedures. Our data show that the PtxD/phosphite system can be used as selectable marker and allows production of the cyanobacterium S. elongatus PCC 7942 in non-axenic outdoor reactors at lower cost, which in principle should be applicable to other cyanobacteria and microalgae engineered to metabolize phosphite.

3.
Proc Natl Acad Sci U S A ; 113(35): E5232-41, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27551092

RESUMEN

Desiccation tolerance (DT) is a remarkable process that allows seeds in the dry state to remain viable for long periods of time that in some instances exceed 1,000 y. It has been postulated that seed DT evolved by rewiring the regulatory and signaling networks that controlled vegetative DT, which itself emerged as a crucial adaptive trait of early land plants. Understanding the networks that regulate seed desiccation tolerance in model plant systems would provide the tools to understand an evolutionary process that played a crucial role in the diversification of flowering plants. In this work, we used an integrated approach that included genomics, bioinformatics, metabolomics, and molecular genetics to identify and validate molecular networks that control the acquisition of DT in Arabidopsis seeds. Two DT-specific transcriptional subnetworks were identified related to storage of reserve compounds and cellular protection mechanisms that act downstream of the embryo development master regulators LEAFY COTYLEDON 1 and 2, FUSCA 3, and ABSCICIC ACID INSENSITIVE 3. Among the transcription factors identified as major nodes in the DT regulatory subnetworks, PLATZ1, PLATZ2, and AGL67 were confirmed by knockout mutants and overexpression in a desiccation-intolerant mutant background to play an important role in seed DT. Additionally, we found that constitutive expression of PLATZ1 in WT plants confers partial DT in vegetative tissues.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Semillas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desecación , Ontología de Genes , Genómica/métodos , Metabolómica/métodos , Mutación , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(52): E7293-302, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26668375

RESUMEN

Phosphate (Pi) availability is a significant limiting factor for plant growth and productivity in both natural and agricultural systems. To cope with such limiting conditions, plants have evolved a myriad of developmental and biochemical strategies to enhance the efficiency of Pi acquisition and assimilation to avoid nutrient starvation. In the past decade, these responses have been studied in detail at the level of gene expression; however, the possible epigenetic components modulating plant Pi starvation responses have not been thoroughly investigated. Here, we report that an extensive remodeling of global DNA methylation occurs in Arabidopsis plants exposed to low Pi availability, and in many instances, this effect is related to changes in gene expression. Modifications in methylation patterns within genic regions were often associated with transcriptional activation or repression, revealing the important role of dynamic methylation changes in modulating the expression of genes in response to Pi starvation. Moreover, Arabidopsis mutants affected in DNA methylation showed that changes in DNA methylation patterns are required for the accurate regulation of a number of Pi-starvation-responsive genes and that DNA methylation is necessary to establish proper morphological and physiological phosphate starvation responses.


Asunto(s)
Arabidopsis/genética , Metilación de ADN , Epigénesis Genética , Epigenómica/métodos , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Adaptación Fisiológica/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
F1000Res ; 4(F1000 Faculty Rev): 651, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26380074

RESUMEN

Achieving sustainable agriculture and producing enough food for the increasing global population will require effective strategies to cope with harsh environments such as water and nutrient stress, high temperatures and compacted soils with high impedance that drastically reduce crop yield. Recent advances in the understanding of the molecular, cellular and epigenetic mechanisms that orchestrate plant responses to abiotic stress will serve as the platform to engineer improved crop plants with better designed root system architecture and optimized metabolism to enhance water and nutrients uptake and use efficiency and/or soil penetration. In this review we discuss such advances and how the generated knowledge could be used to integrate effective strategies to engineer crops by gene transfer or genome editing technologies.

6.
BMC Plant Biol ; 14: 69, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24649917

RESUMEN

BACKGROUND: Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. RESULTS: We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. CONCLUSIONS: The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Hidroponía , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas
7.
Annu Rev Plant Biol ; 65: 95-123, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24579991

RESUMEN

Phosphorus is an essential nutrient that is required for all major developmental processes and reproduction in plants. It is also a major constituent of the fertilizers required to sustain high-yield agriculture. Levels of phosphate--the only form of phosphorus that can be assimilated by plants--are suboptimal in most natural and agricultural ecosystems, and when phosphate is applied as fertilizer in soils, it is rapidly immobilized owing to fixation and microbial activity. Thus, cultivated plants use only approximately 20-30% of the applied phosphate, and the rest is lost, eventually causing water eutrophication. Recent advances in the understanding of mechanisms by which wild and cultivated species adapt to low-phosphate stress and the implementation of alternative bacterial pathways for phosphorus metabolism have started to allow the design of more effective breeding and genetic engineering strategies to produce highly phosphate-efficient crops, optimize fertilizer use, and reach agricultural sustainability with a lower environmental cost. In this review, we outline the current advances in research on the complex network of plant responses to low-phosphorus stress and discuss some strategies used to manipulate genes involved in phosphate uptake, remobilization, and metabolism to develop low-phosphate-tolerant crops, which could help in designing more efficient crops.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Fertilizantes , Fosfatos/metabolismo , Plantas/metabolismo , Productos Agrícolas/genética , Desarrollo de la Planta , Plantas/genética , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA