Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 10: 988533, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213079

RESUMEN

Chronic venous insufficiency (CVI) is a leading vascular disease whose clinical manifestations include varicose veins, edemas, venous ulcers, and venous hypertension, among others. Therapies targeting this medical issue are scarce, and so far, no single venous valve prosthesis is clinically available. Herein, we have designed a bi-leaflet transcatheter venous valve that consists of (i) elastin-like recombinamers, (ii) a textile mesh reinforcement, and (iii) a bioabsorbable magnesium stent structure. Mechanical characterization of the resulting biohybrid elastin-like venous valves (EVV) showed an anisotropic behavior equivalent to the native bovine saphenous vein valves and mechanical strength suitable for vascular implantation. The EVV also featured minimal hemolysis and platelet adhesion, besides actively supporting endothelialization in vitro, thus setting the basis for its application as an in situ tissue engineering implant. In addition, the hydrodynamic testing in a pulsatile bioreactor demonstrated excellent hemodynamic valve performance, with minimal regurgitation (<10%) and pressure drop (<5 mmHg). No stagnation points were detected and an in vitro simulated transcatheter delivery showed the ability of the venous valve to withstand the implantation procedure. These results present a promising concept of a biohybrid transcatheter venous valve as an off-the-shelf implant, with great potential to provide clinical solutions for CVI treatment.

2.
Adv Healthc Mater ; 11(22): e2201646, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36099430

RESUMEN

Spatiotemporal control of vascularization and innervation is a desired hallmark in advanced tissue regeneration. For this purpose, we design a 3D model scaffold, based on elastin-like recombinamer (ELR) hydrogels. This contains two interior and well-defined areas, small cylinders, with differentiated bioactivities with respect to the bulk. Both are constructed on a protease sensitive ELR with a fast-proteolyzed domain, but one bears a VEGF-mimetic peptide (QK) and the other a laminin-derived pentapeptide (IKVAV), to promote angiogenesis and neurogenesis, respectively. The outer bulk is based on a slow proteolytic sequence and RGD cell adhesion domains. In vitro studies show the effect of QK and IKVAV peptides on the promotion of endothelial cell and axon spreading, respectively. The subcutaneous implantation of the final 3D scaffold demonstrates the ability to spatiotemporally control angiogenesis and neurogenesis in vivo. Specifically, the inner small cylinder containing the QK peptide promotes fast endothelialization, whereas the one with IKVAV peptide promotes fast neurogenesis. Both, vascularization and innervation take place in advance of the bulk scaffold infiltration. This scaffold shows that it is possible to induce vascularization and innervation in predetermined areas of the scaffold well ahead to the bulk infiltration. That significantly increases the efficiency of the regenerative activity.


Asunto(s)
Elastina , Laminina , Elastina/farmacología , Elastina/química , Laminina/farmacología , Laminina/química , Factor A de Crecimiento Endotelial Vascular/farmacología , Péptido Hidrolasas , Péptidos/farmacología , Péptidos/química , Hidrogeles/farmacología , Hidrogeles/química , Neurogénesis
3.
Front Bioeng Biotechnol ; 10: 918602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814011

RESUMEN

Hindlimb ischemia is an unmet medical need, especially for those patients unable to undergo vascular surgery. Cellular therapy, mainly through mesenchymal stromal cell (MSC) administration, may be a potentially attractive approach in this setting. In the current work, we aimed to assess the potential of the combination of MSCs with a proangiogenic elastin-like recombinamer (ELR)-based hydrogel in a hindlimb ischemia murine model. Human bone marrow MSCs were isolated from four healthy donors, while ELR biomaterials were genetically engineered. Hindlimb ischemia was induced through ligation of the right femoral artery, and mice were intramuscularly injected with ELR biomaterial, 0.5 × 106 MSCs or the combination, and also compared to untreated animals. Tissue perfusion was monitored using laser Doppler perfusion imaging. Histological analysis of hindlimbs was performed after hematoxylin and eosin staining. Immunofluorescence with anti-human mitochondria antibody was used for human MSC detection, and the biomaterial was detected by elastin staining. To analyze the capillary density, immunostaining with an anti-CD31 antibody was performed. Our results show that the injection of MSCs significantly improves tissue reperfusion from day 7 (p = 0.0044) to day 21 (p = 0.0216), similar to the infusion of MSC + ELR (p = 0.0038, p = 0.0014), without significant differences between both groups. After histological evaluation, ELR hydrogels induced minimal inflammation in the injection sites, showing biocompatibility. MSCs persisted with the biomaterial after 21 days, both in vitro and in vivo. Finally, we observed a higher blood vessel density when mice were treated with MSCs compared to control (p<0.0001), but this effect was maximized and significantly different to the remaining experimental conditions when mice were treated with the combination of MSCs and the ELR biomaterial (p < 0.0001). In summary, the combination of an ELR-based hydrogel with MSCs may improve the angiogenic effects of both strategies on revascularization of ischemic tissues.

4.
Invest Ophthalmol Vis Sci ; 63(4): 27, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35486068

RESUMEN

Purpose: Degenerative mechanisms of retinal neurodegenerative diseases (RND) share common cellular and molecular signalization pathways. Curative treatment does not exist and cell-based therapy, through the paracrine properties of mesenchymal stem cells (MSC), is a potential unspecific treatment for RND. This study aimed to evaluate the neuroprotective capability of human bone marrow (bm) MSC secretome and its potential to modulate retinal responses to neurodegeneration. Methods: An in vitro model of spontaneous retinal neurodegeneration was used to compare three days of monocultured neuroretina (NR), NR cocultured with bmMSC, and NR cultured with bmMSC secretome. We evaluated retinal morphology markers (Lectin peanut agglutinin, rhodopsin, protein kinase C α isoform, neuronal-specific nuclear protein, glial fibrillary acidic protein, TdT-mediated dUTP nick-end labeling, and vimentin) and proteins involved in apoptosis (apoptosis-inductor factor, caspase-3), necroptosis (MLKL), and autophagy (p62). Besides, we analyzed the relative mRNA expression through qPCR of genes involved in apoptosis (BAX, BCL2, CASP3, CASP8, CASP9), necroptosis (MLKL, RIPK1, RIPK3), autophagy (ATG7, BCLIN1, LC3B, mTOR, SQSTM1), oxidative stress (COX2, CYBA, CYBB, GPX6, SOD1, TXN2, TXNRD1) and inflammation (IL1, IL6, IL10, TGFb1, TNFa). Results: The bmMSC secretome preserves retinal morphology, limits pro-apoptotic- and pro-necroptotic-related gene and protein expression, modulates autophagy-related genes and proteins, and stimulates the activation of antioxidant-associated genes. Conclusions: The neuroprotective ability of the bmMSC secretome is associated with activation of antioxidant machinery, modulation of autophagy, and inhibition of apoptosis and necroptosis during retinal degeneration. The neuroprotective effect of bmMSC secretomes in the presence/absence of MSC looks similar. Our current results reinforce the hypothesis that the human bmMSC secretome slows retinal neurodegeneration and may be a therapeutic option for treating RND.


Asunto(s)
Células Madre Mesenquimatosas , Fármacos Neuroprotectores , Antioxidantes/farmacología , Apoptosis , Autofagia , Humanos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Secretoma
5.
Front Neuroanat ; 16: 812487, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35221932

RESUMEN

Retinal neurodegenerative diseases are the leading causes of visual impairment and irreversible blindness worldwide. Although the retinal response to injury remains closely similar between different retinal neurodegenerative diseases, available therapeutic alternatives are only palliative, too expensive, or very specific, such as gene therapy. In that sense, the development of broad-spectrum neuroprotective therapies seems to be an excellent option. In this regard, it is essential to identify molecular targets involved in retinal degeneration, such as cell death mechanisms. Apoptosis has been considered as the primary cell death mechanism during retinal degeneration; however, recent studies have demonstrated that the only use of anti-apoptotic drugs is not enough to confer good neuroprotection in terms of cell viability and preservation. For that reason, the interrelationship that exists between apoptosis and other cell death mechanisms needs to be characterized deeply to design future therapeutic options that simultaneously block the main cell death pathways. In that sense, the study aimed to characterize the programmed cell death (in terms of apoptosis and necroptosis) and autophagy response and modulation in retinal neurodegenerative diseases, using an in vitro model of spontaneous retinal neurodegeneration. For that purpose, we measured the mRNA relative expression through qPCR of a selected pool of genes involved in apoptosis (BAX, BCL2, CASP3, CASP8, and CASP9), necroptosis (MLKL, RIPK1, and RIPK3), and autophagy (ATG7, BCLIN1, LC3B, mTOR, and SQSTM1); besides, the immunoexpression of their encoding proteins (Casp3, MLKL, RIPK1, LC3B, and p62) were analyzed using immunohistochemistry. Our results showed an increase of pro-apoptotic and pro-necroptotic related genes and proteins during in vitro retinal neurodegeneration. Besides, we describe for the first time the modulation between programmed cell death mechanisms and autophagy in an in vitro retinal neurodegeneration model. This study reinforces the idea that cell death mechanisms are closely interconnected and provides new information about molecular signaling and autophagy along the retinal degeneration process.

6.
Front Bioeng Biotechnol ; 9: 652384, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336798

RESUMEN

Current cutting-edge strategies in biomaterials science are focused on mimicking the design of natural systems which, over millions of years, have evolved to exhibit extraordinary properties. Based on this premise, one of the most challenging tasks is to imitate the natural extracellular matrix (ECM), due to its ubiquitous character and its crucial role in tissue integrity. The anisotropic fibrillar architecture of the ECM has been reported to have a significant influence on cell behaviour and function. A new paradigm that pivots around the idea of incorporating biomechanical and biomolecular cues into the design of biomaterials and systems for biomedical applications has emerged in recent years. Indeed, current trends in materials science address the development of innovative biomaterials that include the dynamics, biochemistry and structural features of the native ECM. In this context, one of the most actively studied biomaterials for tissue engineering and regenerative medicine applications are nanofiber-based scaffolds. Herein we provide a broad overview of the current status, challenges, manufacturing methods and applications of nanofibers based on elastin-based materials. Starting from an introduction to elastin as an inspiring fibrous protein, as well as to the natural and synthetic elastin-based biomaterials employed to meet the challenge of developing ECM-mimicking nanofibrous-based scaffolds, this review will follow with a description of the leading strategies currently employed in nanofibrous systems production, which in the case of elastin-based materials are mainly focused on supramolecular self-assembly mechanisms and the use of advanced manufacturing technologies. Thus, we will explore the tendency of elastin-based materials to form intrinsic fibers, and the self-assembly mechanisms involved. We will describe the function and self-assembly mechanisms of silk-like motifs, antimicrobial peptides and leucine zippers when incorporated into the backbone of the elastin-based biomaterial. Advanced polymer-processing technologies, such as electrospinning and additive manufacturing, as well as their specific features, will be presented and reviewed for the specific case of elastin-based nanofiber manufacture. Finally, we will present our perspectives and outlook on the current challenges facing the development of nanofibrous ECM-mimicking scaffolds based on elastin and elastin-like biomaterials, as well as future trends in nanofabrication and applications.

7.
Acta Biomater ; 130: 149-160, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34118450

RESUMEN

One of the main challenges in regenerative medicine is the spatiotemporal control of angiogenesis, which is key for the successful repair of many tissues, and determines the proper integration of the implant through the generation of a functional vascular network. To this end, we have designed a three-dimensional (3D) model consisting of a coaxial binary elastin-like recombinamer (ELR) tubular construct. It displays fast and slow proteolytic hydrogels on its inner and outer part, respectively, both sensitive to the urokinase plasminogen activator protease. The ELRs used to build the scaffold included crosslinkable domains to stabilize the structure and a conjugated VEGF-derived peptide (QK) to induce angiogenesis. The mechanical and morphological evaluation of the ELR hydrogels proved their suitability for soft tissue regeneration. In addition, in vitro studies evidenced the effect of the QK peptide on endothelial cell spreading and anastomosis. Moreover, immunohistochemical analyses after subcutaneous implantation of the ELR hydrogels in mice showed the induction of a low macrophage response that resolved over time. The implantation of the 3D model constructs evidenced the ability of the fast proteolytic sequence and the QK peptide to guide cell infiltration and capillary formation in the pre-designed arrangement of the constructs. These results set the basis for the application of this type of scaffolds in regenerative medicine, where spatiotemporally controlled vascularization will help in the promotion of an optimal tissue repair. STATEMENT OF SIGNIFICANCE: Herein, we show the spatiotemporal control of angiogenesis in vivo by the combination of proteolytic sequences, with fast and slow degradation kinetics, and VEGF-mimetic peptide (QK) in a coaxial binary elastin-like recombinamer (ELR) tubular scaffold. These two bioactivities have been previously described for angiogenesis purposes, but have never been combined. This work demonstrates that the bioactivities act synergistically in promoting cell infiltration and subsequent vascularization, thus leading to a controlled evolution in space and time of the vascular microstructure within the hydrogel-like tubular scaffold. This effect has not been showed before and holds great potential for future vascular applications, which might be of great interest for a substantial part of Acta Biomaterialia readership.


Asunto(s)
Elastina , Factor A de Crecimiento Endotelial Vascular , Animales , Hidrogeles/farmacología , Ratones , Péptido Hidrolasas , Péptidos/farmacología , Andamios del Tejido
8.
Rev. cub. inf. cienc. salud ; 25(2): 249-256, abr.-jun. 2014.
Artículo en Español | LILACS | ID: lil-712643

RESUMEN

Los resultados obtenidos dentro del Sistema de Ciencia e Innovación cubano, desde el año 1995, requieren de tecnologías que contribuyan al proceso de toma de decisiones en la selección de los proyectos a ejecutar. Con este objetivo se diseñó un procedimiento para la evaluación y selección de proyectos de ciencia e innovación, ajustable a cualquier organización en el país. Se usaron herramientas de análisis cualitativo y cuantitativo de información y aplicaciones informáticas, para el diseño de indicadores, la determinación de sus pesos y la evaluación, y se estableció una prioridad para la decisión de seleccionar unos proyectos entre otros. Se garantiza además, un mecanismo de retroalimentación para la mejora del procedimiento. Se concluye que la visión integradora del procedimiento propuesto debe mejorar la efectividad de la gestión de proyectos dentro de las organizaciones y de la toma de decisiones sobre qué proyectos seleccionar para su financiamiento


The results obtained by the Cuban Science and Innovation System since 1995 require technologies supporting decision making in the selection of the projects to be executed. To this end, a procedure was designed for the evaluation and selection of science and innovation projects, adjustable to any organization in the country. Qualitative and quantitative information analysis tools and information applications were used to design indicators and to determine their weight and evaluation. Priorities were set for the decision to select certain projects and not others. A feedback mechanism to improve the procedure is also ensured. It is concluded that an integrated outlook on the procedure proposed should improve the effectiveness of project management in organizations, as well as the process of decision making on which projects to select for funding


Asunto(s)
Toma de Decisiones , Evaluación de Programas y Proyectos de Salud , Proyectos , Proyectos de Desarrollo Tecnológico e Innovación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA