Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 47(17): 8975-8987, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31304538

RESUMEN

Gene loops are formed by the interaction of initiation and termination factors occupying the distal ends of a gene during transcription. RNAPII is believed to affect gene looping indirectly owing to its essential role in transcription. The results presented here, however, demonstrate a direct role of RNAPII in gene looping through the Rpb4 subunit. 3C analysis revealed that gene looping is abolished in the rpb4Δ mutant. In contrast to the other looping-defective mutants, rpb4Δ cells do not exhibit a transcription termination defect. RPB4 overexpression, however, rescued the transcription termination and gene looping defect of sua7-1, a mutant of TFIIB. Furthermore, RPB4 overexpression rescued the ssu72-2 gene looping defect, while SSU72 overexpression restored the formation of gene loops in rpb4Δ cells. Interestingly, the interaction of TFIIB with Ssu72 is compromised in rpb4Δ cells. These results suggest that the TFIIB-Ssu72 interaction, which is critical for gene loop formation, is facilitated by Rpb4. We propose that Rpb4 is promoting the transfer of RNAPII from the terminator to the promoter for reinitiation of transcription through TFIIB-Ssu72 mediated gene looping.


Asunto(s)
ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIB/metabolismo , Terminación de la Transcripción Genética , Genes Fúngicos , Modelos Genéticos , ARN Polimerasa II/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Iniciación de la Transcripción Genética
2.
Nucleic Acids Res ; 47(12): 6250-6268, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31006804

RESUMEN

Specialized telomeric proteins have an essential role in maintaining genome stability through chromosome end protection and telomere length regulation. In the yeast Saccharomyces cerevisiae, the evolutionary conserved CST complex, composed of the Cdc13, Stn1 and Ten1 proteins, largely contributes to these functions. Here, we report genetic interactions between TEN1 and several genes coding for transcription regulators. Molecular assays confirmed this novel function of Ten1 and further established that it regulates the occupancies of RNA polymerase II and the Spt5 elongation factor within transcribed genes. Since Ten1, but also Cdc13 and Stn1, were found to physically associate with Spt5, we propose that Spt5 represents the target of CST in transcription regulation. Moreover, CST physically associates with Hmo1, previously shown to mediate the architecture of S-phase transcribed genes. The fact that, genome-wide, the promoters of genes down-regulated in the ten1-31 mutant are prefentially bound by Hmo1, leads us to propose a potential role for CST in synchronizing transcription with replication fork progression following head-on collisions.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Transcripción Genética , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Quinasas Ciclina-Dependientes/genética , Regulación Fúngica de la Expresión Génica , Fase S/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/metabolismo , Quinasa Activadora de Quinasas Ciclina-Dependientes
3.
Nucleic Acids Res ; 45(17): 10293-10305, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973465

RESUMEN

Transcription termination of non-coding RNAs is regulated in yeast by a complex of three RNA binding proteins: Nrd1, Nab3 and Sen1. Nrd1 is central in this process by interacting with Rbp1 of RNA polymerase II, Trf4 of TRAMP and GUAA/G terminator sequences. We lack structural data for the last of these binding events. We determined the structures of Nrd1 RNA binding domain and its complexes with three GUAA-containing RNAs, characterized RNA binding energetics and tested rationally designed mutants in vivo. The Nrd1 structure shows an RRM domain fused with a second α/ß domain that we name split domain (SD), because it is formed by two non-consecutive segments at each side of the RRM. The GUAA interacts with both domains and with a pocket of water molecules, trapped between the two stacking adenines and the SD. Comprehensive binding studies demonstrate for the first time that Nrd1 has a slight preference for GUAA over GUAG and genetic and functional studies suggest that Nrd1 RNA binding domain might play further roles in non-coding RNAs transcription termination.


Asunto(s)
Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Terminación de la Transcripción Genética , Secuencia de Aminoácidos , Secuencia Conservada , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
4.
Elife ; 62017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262097

RESUMEN

Cell growth requires synthesis of ribosomal RNA by RNA polymerase I (Pol I). Binding of initiation factor Rrn3 activates Pol I, fostering recruitment to ribosomal DNA promoters. This fundamental process must be precisely regulated to satisfy cell needs at any time. We present in vivo evidence that, when growth is arrested by nutrient deprivation, cells induce rapid clearance of Pol I-Rrn3 complexes, followed by the assembly of inactive Pol I homodimers. This dual repressive mechanism reverts upon nutrient addition, thus restoring cell growth. Moreover, Pol I dimers also form after inhibition of either ribosome biogenesis or protein synthesis. Our mutational analysis, based on the electron cryomicroscopy structures of monomeric Pol I alone and in complex with Rrn3, underscores the central role of subunits A43 and A14 in the regulation of differential Pol I complexes assembly and subsequent promoter association.


Asunto(s)
ADN Ribosómico/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Multimerización de Proteína , ARN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transcripción Genética , Microscopía por Crioelectrón , Análisis Mutacional de ADN , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Nucleic Acids Res ; 45(5): 2458-2471, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-27924005

RESUMEN

Biogenesis of messenger RNA is critically influenced by the phosphorylation state of the carboxy-terminal domain (CTD) in the largest RNA polymerase II (RNAPII) subunit. Several kinases and phosphatases are required to maintain proper CTD phosphorylation levels and, additionally, several other proteins modulate them, including Rpb4/7 and Sub1. The Rpb4/7 heterodimer, constituting the RNAPII stalk, promote phosphatase functions and Sub1 globally influences CTD phosphorylation, though its mechanism remains mostly unknown. Here, we show that Sub1 physically interacts with the RNAPII stalk domain, Rpb4/7, likely through its C-terminal region, and associates with Fcp1. While Rpb4 is not required for Sub1 interaction with RNAPII complex, a fully functional heterodimer is required for Sub1 association to promoters. We also demonstrate that a complete CTD is necessary for proper association of Sub1 to chromatin and to the RNAPII. Finally, genetic data show a functional relationship between Sub1 and the RNAPII clamp domain. Altogether, our results indicate that Sub1, Rpb4/7 and Fcp1 interaction modulates CTD phosphorylation. In addition, Sub1 interaction with Rpb4/7 can also modulate transcription start site selection and transcription elongation rate likely by influencing the clamp function.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Alelos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Fosfoproteínas Fosfatasas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa II/genética , ARN Mensajero/biosíntesis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/química , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA