Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 5(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35193953

RESUMEN

ER stress is mediated by three sensors and the most evolutionary conserved IRE1α signals through its cytosolic kinase and endoribonuclease (RNase) activities. IRE1α RNase activity can either catalyze the initial step of XBP1 mRNA unconventional splicing or degrade a number of RNAs through regulated IRE1-dependent decay. Until now, the biochemical and biological outputs of IRE1α RNase activity have been well documented; however, the precise mechanisms controlling whether IRE1α signaling is adaptive or pro-death (terminal) remain unclear. We investigated those mechanisms and hypothesized that XBP1 mRNA splicing and regulated IRE1-dependent decay activity could be co-regulated by the IRE1α RNase regulatory network. We identified that RtcB, the tRNA ligase responsible for XBP1 mRNA splicing, is tyrosine-phosphorylated by c-Abl and dephosphorylated by PTP1B. Moreover, we show that the phosphorylation of RtcB at Y306 perturbs RtcB interaction with IRE1α, thereby attenuating XBP1 mRNA splicing. Our results demonstrate that the IRE1α RNase regulatory network is dynamically fine-tuned by tyrosine kinases and phosphatases upon various stresses and that the extent of RtcB tyrosine phosphorylation determines cell adaptive or death outputs.


Asunto(s)
Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas , Tirosina/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
2.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34445078

RESUMEN

The Smoothened (SMO) receptor is the most druggable target in the Hedgehog (HH) pathway for anticancer compounds. However, SMO antagonists such as vismodegib rapidly develop drug resistance. In this study, new SMO antagonists having the versatile purine ring as a scaffold were designed, synthesised, and biologically tested to provide an insight to their mechanism of action. Compound 4s was the most active and the best inhibitor of cell growth and selectively cytotoxic to cancer cells. 4s induced cell cycle arrest, apoptosis, a reduction in colony formation and downregulation of PTCH and GLI1 expression. BODIPY-cyclopamine displacement assays confirmed 4s is a SMO antagonist. In vivo, 4s strongly inhibited tumour relapse and metastasis of melanoma cells in mice. In vitro, 4s was more efficient than vismodegib to induce apoptosis in human cancer cells and that might be attributed to its dual ability to function as a SMO antagonist and apoptosis inducer.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Purinas/farmacología , Receptor Smoothened/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células HT29 , Proteínas Hedgehog/metabolismo , Humanos , Ratones Endogámicos C57BL , Neoplasias/metabolismo , Purinas/química , Purinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Receptor Smoothened/metabolismo
3.
Trends Cell Biol ; 30(11): 881-891, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33036871

RESUMEN

Sustaining both proteome and genome integrity (GI) requires the integration of a wide range of mechanisms and signaling pathways. These comprise, in particular, the unfolded protein response (UPR) and the DNA damage response (DDR). These adaptive mechanisms take place respectively in the endoplasmic reticulum (ER) and in the nucleus. UPR and DDR alterations are associated with aging and with pathologies such as degenerative diseases, metabolic and inflammatory disorders, and cancer. We discuss the emerging signaling crosstalk between UPR stress sensors and the DDR, as well as their involvement in cancer biology.


Asunto(s)
Daño del ADN , Retículo Endoplásmico/metabolismo , Proteostasis , Animales , Daño del ADN/genética , Inestabilidad Genómica , Humanos , Modelos Biológicos , Proteostasis/genética , Transducción de Señal
4.
Nat Commun ; 11(1): 2401, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409639

RESUMEN

The molecular connections between homeostatic systems that maintain both genome integrity and proteostasis are poorly understood. Here we identify the selective activation of the unfolded protein response transducer IRE1α under genotoxic stress to modulate repair programs and sustain cell survival. DNA damage engages IRE1α signaling in the absence of an endoplasmic reticulum (ER) stress signature, leading to the exclusive activation of regulated IRE1α-dependent decay (RIDD) without activating its canonical output mediated by the transcription factor XBP1. IRE1α endoribonuclease activity controls the stability of mRNAs involved in the DNA damage response, impacting DNA repair, cell cycle arrest and apoptosis. The activation of the c-Abl kinase by DNA damage triggers the oligomerization of IRE1α to catalyze RIDD. The protective role of IRE1α under genotoxic stress is conserved in fly and mouse. Altogether, our results uncover an important intersection between the molecular pathways that sustain genome stability and proteostasis.


Asunto(s)
Supervivencia Celular/genética , Reparación del ADN , Proteínas de Drosophila/metabolismo , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad del ARN/genética , Animales , Daño del ADN , Proteínas de Drosophila/genética , Drosophila melanogaster , Endorribonucleasas/genética , Femenino , Fibroblastos , Inestabilidad Genómica , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/genética , Proteostasis/genética , Proteínas Proto-Oncogénicas c-abl/metabolismo , ARN Mensajero/metabolismo
6.
Nat Cell Biol ; 21(6): 755-767, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31110288

RESUMEN

Mitochondria-associated membranes (MAMs) are central microdomains that fine-tune bioenergetics by the local transfer of calcium from the endoplasmic reticulum to the mitochondrial matrix. Here, we report an unexpected function of the endoplasmic reticulum stress transducer IRE1α as a structural determinant of MAMs that controls mitochondrial calcium uptake. IRE1α deficiency resulted in marked alterations in mitochondrial physiology and energy metabolism under resting conditions. IRE1α determined the distribution of inositol-1,4,5-trisphosphate receptors at MAMs by operating as a scaffold. Using mutagenesis analysis, we separated the housekeeping activity of IRE1α at MAMs from its canonical role in the unfolded protein response. These observations were validated in vivo in the liver of IRE1α conditional knockout mice, revealing broad implications for cellular metabolism. Our results support an alternative function of IRE1α in orchestrating the communication between the endoplasmic reticulum and mitochondria to sustain bioenergetics.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endorribonucleasas/genética , Metabolismo Energético , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Calcio/metabolismo , Señalización del Calcio/genética , Retículo Endoplásmico/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Ratones , Ratones Noqueados , Mitocondrias/genética
7.
Semin Cancer Biol ; 50: 42-52, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29369790

RESUMEN

Cancer cells are exposed to adverse conditions within the tumor microenvironment that challenge cells to adapt and survive. Several of these homeostatic perturbations insults alter the normal function of the endoplasmic reticulum (ER), resulting in the accumulation of misfolded proteins. ER stress triggers a conserved signaling pathway known as the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. The UPR has been described as a major driver in the acquisition of malignant characteristics that ultimately lead to cancer progression. Although, several reports describe the relevance of the UPR in tumor growth, the possible crosstalk with other cancer-related pathways is starting to be elucidated. The Forkhead Box O (FoxO) subfamily of proteins has a major role in cancer progression, where chromosomal translocations and deregulated signaling lead to loss-of-function of FoxO proteins, contributing to tumor progression. Here we discuss the homeostatic connection between the UPR and FoxO proteins and its possible implications to tumor progression and the acquisition of several hallmarks of cancer. In addition, studies linking a crosstalk between the UPR and FoxO proteins in other diseases, including neurodegeneration and metabolic disorders is provided.


Asunto(s)
Factores de Transcripción Forkhead/genética , Neoplasias/genética , Proteostasis/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Homeostasis , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal/genética , Respuesta de Proteína Desplegada/genética
8.
DNA Cell Biol ; 35(12): 819-827, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27540769

RESUMEN

High incidence of Rho Cdc42-GTPase overexpression has been found in Colorectal Cancer (CRC) samples, suggesting its potential role in tumor development. However, no conclusive studies have shown the lack of mutations and/or copy number of Cdc42 gene in this type of samples. To understand mutation/deletion and copy number status of Cdc42 gene, CRC patients were evaluated for both parameters. More than Cdc42 mutants, single-nucleotide variants were found. Analysis of regions flanking the Cdc42 gene showed allelic imbalance; 58.7% were loss of heterozygosity (LOH) positive and 14.8% presented microsatellite instability. The highest LOH percentage was located between microsatellite markers D1S199 and D1S2674, where the Cdc42 gene is located. No association between gender, age, and tumor stage was found. LOH validation through gene dosage analysis showed most CRC patients with allelic imbalance also presented a low gene dosage of Cdc42, although equal amounts of Cdc42 mRNA were detected in all samples. Although changes in Cdc42 expression were not found in any condition, Cdc42 activation was different between high and normal gene dosage samples, but not between samples with normal and low copy number. Low dosage of Cdc42 was also not related to changes in methylation status at the Cdc42 promoter region. Results suggest that low copy of Cdc42 gene is not associated with Cdc42 protein dysfunction in CRC patients.


Asunto(s)
Neoplasias Colorrectales/genética , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Pérdida de Heterocigocidad , Proteína de Unión al GTP cdc42/genética , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Colon/metabolismo , Colon/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Humanos , Masculino , Repeticiones de Microsatélite , Persona de Mediana Edad , Estadificación de Neoplasias , Estudios Retrospectivos , Eliminación de Secuencia , Proteína de Unión al GTP cdc42/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...