Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hepatocell Carcinoma ; 11: 1891-1905, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39372712

RESUMEN

Purpose: Hepatocellular carcinoma (HCC) related to metabolic dysfunction-associated steatotic liver disease (MASLD) is often diagnosed at a late stage, and its incidence is increasing. Predictive biomarkers are therefore needed to identify individuals at high risk of HCC. We aimed to characterize the gut microbiome and hepatic transcriptome associated with HCC development in female mice with hepatocyte-deletion of Pten (HepPten -). These mice present with large variations in HCC development, making them a powerful model for biomarker discovery. Methods & Results: Sequencing of stool 16S and hepatic RNA was performed on a first set of mice. Among all liver histology parameters measured, the strongest association with microbiome composition changes was with the number of tumors detected at necropsy, followed by inflammation. The gut microbiome of mice with more than 2 tumors was enriched with Lachnospiraceae UCG and depleted of Palleniella intestinalis and Odoribacter. In contrast, hepatic transcriptomic changes were most strongly associated with tumor burden, followed by liver fibrosis. The 840 differentially expressed genes correlating with tumor burden were enriched in leukocyte extravasation and interleukin 10 receptor A (IL10RA) pathways. In addition, the abundance of Spp1-high epithelial cells is correlated with tumor burden. Association between tumor number and depletion of Palleniella intestinalis, and between tumor burden and circulating levels of C-X-C motif chemokine ligand 13 (CXCL13) and stem cell factor (SCF), was further validated in an independent set of mice. Conclusion: We identified microbiome components contributing to liver carcinogenesis by inducing inflammation, and changes in hepatic gene expression and hepatic cells distribution that contribute to tumor growth. Such information can be highly valuable for the development of new prevention strategies as well as of new biomarkers for risk modeling in HCC.

2.
Gut Microbes ; 16(1): 2399260, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239875

RESUMEN

The gut microbiota drives progression to liver fibrosis, the main determinant of mortality in metabolic dysfunction-associated steatohepatitis (MASH). In this study, we aimed to identify bacterial species associated with protection against liver fibrosis in a high-risk population, and test their potential to protect against liver fibrosis in vivo. Based on stool shotgun metagenomic sequencing of 340 subjects from a population cohort disproportionally affected by MASH, we identified bacterial species from the Bacteroidales and Clostridiales orders associated with reduced risk of liver fibrosis. A bacterial consortium was subsequently tested in a mouse model of MASH, which demonstrated protective effects against liver fibrosis. Six of the eight inoculated bacteria were detected in mouse stool and liver. Intrahepatic presence of bacteria was further confirmed by bacterial culture of mouse liver tissue. Changes in liver histological parameters, gut functional profiles, and amino acid profiles were additionally assessed. Comparison between fibrosis-associated human metagenome and bacteria-induced metagenome changes in mice identified microbial functions likely to mediate the protective effect against liver fibrosis. Amino acid profiling confirmed an increase in cysteine synthase activity, associated with reduced fibrosis. Other microbiota-induced changes in amino acids associated with reduced fibrosis included increased gut asparaginase activity and decreased hepatic tryptophan-to-kynurenine conversion. This human-to-mouse study identified bacterial species and their effects on amino acid metabolism as innovative strategies to protect against liver fibrosis in MASH.


Asunto(s)
Aminoácidos , Bacterias , Microbioma Gastrointestinal , Cirrosis Hepática , Hígado , Animales , Humanos , Cirrosis Hepática/microbiología , Cirrosis Hepática/metabolismo , Ratones , Aminoácidos/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Masculino , Hígado/metabolismo , Hígado/patología , Hígado/microbiología , Femenino , Heces/microbiología , Ratones Endogámicos C57BL , Persona de Mediana Edad , Hígado Graso/metabolismo , Hígado Graso/microbiología , Modelos Animales de Enfermedad , Metagenoma , Adulto
3.
Nat Commun ; 15(1): 6421, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080316

RESUMEN

The rodent-borne Andes virus (ANDV) causes a severe disease in humans. We developed an ANDV mRNA vaccine based on the M segment of the viral genome, either with regular uridine (U-mRNA) or N1-methylpseudouridine (m1Ψ-mRNA). Female mice immunized by m1Ψ-mRNA developed slightly greater germinal center (GC) responses than U-mRNA-immunized mice. Single cell RNA and BCR sequencing of the GC B cells revealed similar levels of activation, except an additional cluster of cells exhibiting interferon response in animals vaccinated with U-mRNA but not m1Ψ-mRNA. Similar immunoglobulin class-switching and somatic hypermutations were observed in response to the vaccines. Female Syrian hamsters were immunized via a prime-boost regimen with two doses of each vaccine. The titers of glycoprotein-binding antibodies were greater for U-mRNA construct than for m1Ψ-mRNA construct; however, the titers of ANDV-neutralizing antibodies were similar. Vaccinated animals were challenged with a lethal dose of ANDV, along with a naïve control group. All control animals and two animals vaccinated with a lower dose of m1Ψ-mRNA succumbed to infection whereas other vaccinated animals survived without evidence of virus replication. The data demonstrate the development of a protective vaccine against ANDV and the lack of a substantial effect of m1Ψ modification on immunogenicity and protection in rodents.


Asunto(s)
Mesocricetus , Uridina , Vacunas Virales , Animales , Femenino , Ratones , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/inmunología , Anticuerpos Antivirales/inmunología , Orthohantavirus/inmunología , Orthohantavirus/genética , Anticuerpos Neutralizantes/inmunología , Centro Germinal/inmunología , Seudouridina/inmunología , Cricetinae , Vacunas de ARNm , Fiebre Hemorrágica Americana/prevención & control , Fiebre Hemorrágica Americana/inmunología , Fiebre Hemorrágica Americana/virología , ARN Viral/genética , ARN Viral/inmunología , Linfocitos B/inmunología , Humanos , Desarrollo de Vacunas
4.
Cancers (Basel) ; 15(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37568603

RESUMEN

The worldwide incidence of hepatocellular carcinoma (HCC) continues to rise, in part due to poor diet, limited exercise, and alcohol abuse. Numerous studies have suggested that the loss or mutation of PTEN plays a critical role in HCC tumorigenesis through the activation of the PI3K/Akt signaling axis. The homozygous knockout of PTEN in the livers of mice results in the accumulation of fat (steatosis), inflammation, fibrosis, and eventually progression to HCC. This phenotype bears a striking similarity to non-alcoholic steatohepatitis (NASH) which is thought to occupy an intermediate stage between non-alcoholic fatty liver disease (NAFLD), fibrosis, and HCC. The molecular and physiological phenotypes that manifest during the transition to HCC suggest that molecular imaging could provide a non-invasive screening platform to identify the hallmarks of HCC initiation prior to the presentation of clinical disease. We have carried out longitudinal imaging studies on the liver-specific PTEN knockout mouse model using CT, MRI, and multi-tracer PET to interrogate liver size, steatosis, inflammation, and apoptosis. In male PTEN knockout mice, significant steatosis was observed as early as 3 months using both magnetic resonance spectroscopy (MRS) and computed tomography (CT). Enhanced uptake of the apoptosis tracer 18F-TBD was also observed in the livers of male PTEN homozygous knockout mice between 3 and 4 months of age relative to heterozygous knockout controls. Liver uptake of the inflammation tracer [18F]4FN remained relatively low and constant over 7 months in male PTEN homozygous knockout mice, suggesting the suppression of high-energy ROS/RNS with PTEN deletion relative to heterozygous males where the [18F]4FN liver uptake was elevated at early and late time points. All male PTEN homozygous mice developed HCC lesions by month 10. In contrast to the male cohort, only 20% (2 out of 10) of female PTEN homozygous knockout mice developed HCC lesions by month 10. Steatosis was significantly less pronounced in the female PTEN homozygous knockout mice relative to males and could not accurately predict the eventual occurrence of HCC. As with the males, the [18F]4FN uptake in female PTEN homozygous knockout mice was low and constant throughout the time course. The liver uptake of 18F-TBD at 3 and 4.5 months was higher in the two female PTEN knockout mice that would eventually develop HCC and was the most predictive imaging biomarker for HCC in the female cohort. These studies demonstrate the diagnostic and prognostic role of multi-modal imaging in HCC mouse models and provide compelling evidence that disease progression in the PTEN knockout model is highly dependent on gender.

5.
J Neurosci ; 40(2): 459-477, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31748376

RESUMEN

α-Synuclein (α-Syn) accumulation is a pathological hallmark of Parkinson's disease. Duplications and triplications of SNCA, the gene coding for α-Syn, cause genetic forms of the disease, which suggests that increased α-Syn dosage can drive PD. To identify the proteins that regulate α-Syn, we previously performed a screen of potentially druggable genes that led to the identification of 60 modifiers. Among them, Doublecortin-like kinase 1 (DCLK1), a microtubule binding serine threonine kinase, emerged as a promising target due to its potent effect on α-Syn and potential druggability as a neuron-expressed kinase. In this study, we explore the relationship between DCLK1 and α-Syn in human cellular and mouse models of PD. First, we show that DCLK1 regulates α-Syn levels post-transcriptionally. Second, we demonstrate that knockdown of Dclk1 reduces phosphorylated species of α-Syn and α-Syn-induced neurotoxicity in the SNc in two distinct mouse models of synucleinopathy. Last, silencing DCLK1 in human neurons derived from individuals with SNCA triplications reduces phosphorylated and total α-Syn, thereby highlighting DCLK1 as a potential therapeutic target to reduce pathological α-Syn in disease.SIGNIFICANCE STATEMENT DCLK1 regulates α-Syn protein levels, and Dclk1 knockdown rescues α-Syn toxicity in mice. This study provides evidence for a novel function for DCLK1 in the mature brain, and for its potential as a new therapeutic target for synucleinopathies.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Quinasas Similares a Doblecortina , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...