Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
2.
Sci Rep ; 14(1): 16175, 2024 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003421

RESUMEN

Seminal plasma (SP) is rich in extracellular vesicles (EVs), which are still poorly studied, especially in livestock species. To better understand their functional role in both spermatozoa and endometrial epithelial cells, proper characterization of EVs is an essential step. The objective was to phenotypically characterize porcine seminal EVs (sEVs) using cryogenic electron microscopy (cryo-EM), which allows visualization of EVs in their native state. Porcine ejaculates are released in fractions, each containing SP from different source. This allows characterization sEVs released from various male reproductive tissues. Two experiments were performed, the first with SP from the entire ejaculate (n:6) and the second with SP from three ejaculate fractions (n:15): the first 10 mL of the sperm-rich ejaculate fraction (SRF-P1) with SP mainly from the epididymis, the remainder of the SRF (SRF-P2) with SP mainly from the prostate, and the post-SRF with SP mainly from the seminal vesicles. The sEVs were isolated by size exclusion chromatography and 1840 cryo-EM sEV images were acquired using a Jeol-JEM-2200FS/CR-EM. The size, electron density, complexity, and peripheral corona layer were measured in each sEV using the ImageJ software. The first experiment showed that sEVs were structurally and morphologically heterogeneous, although most (83.1%) were small (less than 200 nm), rounded, and poorly electrodense, and some have a peripheral coronal layer. There were also larger sEVs (16.9%) that were irregularly shaped, more electrodense, and few with a peripheral coronal layer. The second experiment showed that small sEVs were more common in SRF-P1 and SRF-P2, indicating that they originated mainly from the epididymis and prostate. Large sEVs were more abundant in post-SRF, indicating that they originated mainly from seminal vesicles. Porcine sEVs are structurally and morphologically heterogeneous. This would be explained by the diversity of reproductive organs of origin.


Asunto(s)
Microscopía por Crioelectrón , Vesículas Extracelulares , Semen , Animales , Vesículas Extracelulares/ultraestructura , Vesículas Extracelulares/metabolismo , Masculino , Microscopía por Crioelectrón/métodos , Porcinos , Espermatozoides/ultraestructura , Vesículas Seminales/ultraestructura
3.
J Extracell Biol ; 3(2): e140, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38939902

RESUMEN

Extracellular vesicles (EVs) have been involved in metabolic syndrome, although their specific role in the development of the pathology is still unknown. To further study the role of EVs, we have analysed by Raman tweezers microspectroscopy and mass spectrometry-based lipidomics the small EVs population secreted by fatty (ZF) and lean (ZL) hepatocytes obtained from Zucker rats. We have also explored in vivo and ex vivo biodistribution of these EVs through fluorine-18-radiolabelling using a positron emission tomography imaging. Based on the proportion of proteins to lipids and the types of lipids, our results indicate that within the range of small EVs, primary hepatocytes secrete different subpopulations of particles. These differences were observed in the enrichment of triglyceride species in EVs secreted by ZF hepatocytes. Biodistribution experiments showed accumulation in the brain, heart, lungs, kidney and specially in bladder after intravenous administration. In summary, we show that EVs released by a fatty hepatocytes carry a different lipid signature compared to their lean counterpart. Biodistribution experiment has shown no difference in the distribution of EVs secreted by ZF and ZL hepatocytes but has given us a first view of possible target organs for these particles. Our results might open a door to both pathology studies and therapeutic interventions.

4.
Res Vet Sci ; 171: 105222, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513461

RESUMEN

In vitro maturation (IVM) of oocytes is clinically used in horses to produce blastocysts but current conditions used for horses are suboptimal. We analyzed the composition of equine preovulatory follicular fluid (FF) secretome and tested its effects on meiotic competence and gene expression in oocytes subjected to IVM. Preovulatory FF was obtained, concentrated using ultrafiltration with cut-off of 10 kDa, and stored at -80 °C. The metabolic and proteomic composition was analyzed, and its ultrastructural composition was assessed by cryo-transmission microscopy. Oocytes obtained post-mortem or by ovum pick up (OPU) were subjected to IVM in the absence (control) or presence of 20 or 40 µg/ml (S20 or S40) of secretome. Oocytes were then analyzed for chromatin configuration or snap frozen for gene expression analysis. Proteomic analysis detected 255 proteins in the Equus caballus database, mostly related to the complement cascade and cholesterol metabolism. Metabolomic analysis yielded 14 metabolites and cryo-transmission electron microscopy analysis revealed the presence of extracellular vesicles (EVs). No significant differences were detected in maturation rates among treatments. However, the expression of GDF9 and BMP15 significantly increased in OPU-derived oocytes compared to post-mortem oocytes (fold increase ± SEM: 9.4 ± 0.1 vs. 1 ± 0.5 for BMP15 and 9.9 ± 0.3 vs. 1 ± 0.5 for GDF9, respectively; p < 0.05). Secretome addition increased the expression of TNFAIP6 in S40 regardless of the oocyte source. Further research is necessary to fully understand whether secretome addition influences the developmental competence of equine oocytes.


Asunto(s)
Líquido Folicular , Proteómica , Femenino , Caballos , Animales , Líquido Folicular/química , Líquido Folicular/metabolismo , Secretoma , Meiosis , Oocitos/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria
5.
Cells ; 13(1)2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38201299

RESUMEN

Salivary extracellular vesicles (EVs) represent an attractive source of biomarkers due to the accessibility of saliva and its non-invasive sampling methods. However, the lack of comparative studies assessing the efficacy of different EV isolation techniques hampers the use of salivary EVs in clinical settings. Moreover, the effects of age on salivary EVs are largely unknown, hindering the identification of salivary EV-associated biomarkers across the lifespan. To address these questions, we compared salivary EV concentration, size mode, protein concentration, and purity using eight EV isolation techniques before and after magnetic bead immunocapture with antibodies against CD9, CD63, and CD81. The effects of age on salivary EVs obtained with each isolation technique were further investigated. Results showed higher expression of CD63 on isolated salivary EVs compared to the expression of CD81 and flotillin-1. Overall, magnetic bead immunocapture was more efficient in recovering salivary EVs with Norgen's Saliva Exosome Purification Kit and ExoQuick-TC ULTRA at the cost of EV yield. Regardless of age, Invitrogen Total Exosome Isolation Solution showed the highest level of protein concentration, whereas Izon qEVOriginal-70nm columns revealed the highest purity. This study provides the first comprehensive comparison of salivary EVs in younger and older adults using different EV isolation techniques, which represents a step forward for assessing salivary EVs as a source of potential biomarkers of tissue-specific diseases throughout the life cycle.


Asunto(s)
Exosomas , Vesículas Extracelulares , Humanos , Anciano , Saliva , Anticuerpos , Biomarcadores
6.
Pigment Cell Melanoma Res ; 37(5): 569-582, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38158521

RESUMEN

Intercellular communication is a cell-type and stimulus-dependent event driven not only by soluble factors but also by extracellular vesicles (EVs). EVs include vesicles of different size and origin that contain a myriad of molecules. Among them, small EVs (sEV; <200 nm) have been shown to modulate not just regional cell responses but also distant organ behavior. In cancer, distant organ modulation by sEVs has been associated to disease dissemination, which is one of the main concerns in melanoma. Description of broadly conserved alterations in sEV-contained molecules represents a strategy to identify key modifications in cellular communication as well as new disease biomarkers. Here, we characterize proteomes of cutaneous melanocyte and melanoma-derived sEVs to deepen on the landscape of normal and disease-related cell communication. Results reveal the presence of unique protein signatures for melanocytes and melanoma cells that reflect cellular transformation-related profound modifications. Melanocyte-derived sEVs are enriched in oxidative metabolism (e.g., aconitase 2, ACO2) or pigmentation (e.g., tyrosinase, TYR) related proteins while melanoma-derived sEVs reflect a generalized decrease in mature melanocytic markers (e.g., melanoma antigen recognized by T-cells 1, MART-1, also known as MLANA) and an increase in epithelial to mesenchymal transition (EMT)-related adhesion molecules such as tenascin C (TNC).


Asunto(s)
Vesículas Extracelulares , Melanocitos , Melanoma , Humanos , Melanoma/patología , Melanoma/metabolismo , Melanocitos/metabolismo , Melanocitos/patología , Vesículas Extracelulares/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Proteoma/metabolismo
7.
Artículo en Español | LILACS, CUMED | ID: biblio-1560609

RESUMEN

La vacunación es una forma de contribuir a la protección de la población al reducir el riesgo de efectos graves de la enfermedad COVID-19. Para marzo de 2021, en tiempo récord, la industria biotecnológica cubana contaba con cinco candidatos vacunales. Se realizó una intervención sanitaria con un esquema heterólogo: dos dosis de SOBERANA®02 más una dosis de SOBERANA®Plus, en trabajadores durante el período de marzo a junio de 2021, en el Instituto Finlay de Vacunas, en La Habana, Cuba. Se evaluaron los efectos directos e indirectos de la vacunación con SOBERANA®02 y SOBERANA®Plus en una cohorte de riesgo de infección, enfermedad y diseminación de la COVID-19. La cohorte se estableció en marzo de 2021 en trabajadores con alta exposición al coronavirus de tipo 2 causante del síndrome respiratorio agudo severo, en el área de consulta médica de Instituto Finlay de Vacunas, establecida como sitio clínico. Entre el 22 de marzo de 2021 y el 11 de junio de 2021, se inscribieron un total de 1.776 participantes; de ellos, 1.719 cumplieron los criterios de inclusión con un porcentaje de 96,79 por ciento para la primera dosis, 1.675 recibieron la segunda dosis y 1.653 se vacunaron SOBERANA®Plus como tercera dosis para un 97,87por ciento. Mil cuatrocientos cincuenta y siete tenían entre 19 y 59 años, con predominio del sexo femenino. De los participantes, 175 tuvieron acontecimientos adversos y se observaron, predominantemente, una hora después de la administración de cada dosis. La reacción local más referida fue el dolor en el lugar de la inyección. Se registraron pocos acontecimientos adversos no solicitados. No se notificó ningún evento adverso grave o severo asociado a la vacuna. La distribución de casos de COVID-19 fue de 30, 16 y 6 posterior a cada dosis recibida. No se notificaron muertes asociadas a COVID-19. Las vacunas SOBERANA®02 y SOBERANA®Plus tuvieron un buen perfil de seguridad y fueron capaces de reducir la enfermedad grave por COVID-19 y la muerte, ayudando a revertir la situación epidemiológica causada por el coronavirus de tipo 2 causante del síndrome respiratorio agudo severo en Cuba(AU)


Vaccination is a way to help protect people by reducing the risk of serious effects from COVID-19 illness. By March of 2021, in record time, Cuba's biotech industry had five vaccine candidates. A sanitary intervention with a heterologous scheme, two doses of SOBERANA®02 and one dose of SOBERANA®Plus, was carried out in workers during the period of March to June 2021 at Finlay Vaccine Institute, in Havana, Cuba. We evaluated the direct and indirect effects of vaccination with SOBERANA®02 and SOBERANA®Plus, in a cohort at risk of infection, disease and spread of the epidemic COVID-19. The cohort was established in March 2021, among workers with high exposure to SARS-CoV-2, at the area of medical consultation at Finlay Vaccine Institute, established as clinical site. Between March 22, 2021 and June 11, 2021, were enrolled a total of 1,776 participants and, of them, 1,719 met the inclusion criteria with a percentage of 96.79percent for first dose, of which 1,675 received the second dose and 1,653 received SOBERANA®Plus as third dose for 97.87percent. The majority of participants were aged 19-59 years (1,457), being female, the predominant sex. Among the participants, 175 had adverse events, predominantly observed one hour after the administration of each dose. The most common local reaction was injection site pain. Few unsolicited adverse events were recorded. No vaccine-associated severe or serious adverse events were reported. The distribution of COVID-19 case was 30 post first dose, 16 post second dose and 6 post last dose. No deaths associated with COVID-19 were reported. SOBERANA®02 and SOBERANA®Plus vaccines had a good safety profile and were capable of a reduction of severe COVID-19 illness and death helping to reverse the epidemiological situation caused by the SARS-COV-2 in Cuba(AU)


Asunto(s)
Humanos , Masculino , Femenino , Vacunas contra la COVID-19/uso terapéutico , COVID-19/epidemiología , Grupos Profesionales
8.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685849

RESUMEN

The use of platelet-rich plasma (PRP) has gained increasing interest in recent decades. The platelet secretome contains a multitude of growth factors, cytokines, chemokines, and other biological biomolecules. In recent years, developments in the field of platelets have led to new insights, and attention has been focused on the platelets' released extracellular vesicles (EVs) and their role in intercellular communication. In this context, the aim of this review was to compile the current evidence on PRP-derived extracellular vesicles to identify the advantages and limitations fortheir use in the upcoming clinical applications. A total of 172 articles were identified during the systematic literature search through two databases (PubMed and Web of Science). Twenty publications met the inclusion criteria and were included in this review. According to the results, the use of PRP-EVs in the clinic is an emerging field of great interest that represents a promising therapeutic option, as their efficacy has been demonstrated in the majority of fields of applications included in this review. However, the lack of standardization along the procedures in both the field of PRP and the EVs makes it extremely challenging to compare results among studies. Establishing standardized conditions to ensure optimized and detailed protocols and define parameters such as the dose or the EV origin is therefore urgent. Further studies to elucidate the real contribution of EVs to PRP in terms of composition and functionality should also be performed. Nevertheless, research on the field provides promising results and a novel basis to deal with the regenerative medicine and drug delivery fields in the future.


Asunto(s)
Vesículas Extracelulares , Plasma Rico en Plaquetas , Plaquetas , Comunicación Celular , Medicina Regenerativa
9.
Small ; 19(35): e2300390, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37118859

RESUMEN

Extracellular vesicles (EVs) are secreted nanostructures that play various roles in critical cancer processes. They operate as an intercellular communication system, transferring complex sets of biomolecules from cell to cell. The concentration of EVs is difficult to decipher, and there is an unmet technological need for improved (faster, simpler, and gentler) approaches to isolate EVs from complex matrices. Herein, an acoustofluidic concentration of extracellular vesicles (ACEV) is presented, based on a thin-film printed circuit board with interdigital electrodes mounted on a piezoelectric substrate. An angle of 120° is identified between the electrodes and the reference flat of the piezoelectric substrate for simultaneous generation of Rayleigh and shear horizontal waves. The dual waves create a complex acoustic field in a droplet, resulting in effective concentration of nanoparticles and EVs. The ACEV is able to concentrate 20 nm nanospheres within 105 s and four EV dilutions derived from the human prostate cancer (Du145) cell line in approximately 30 s. Cryo-electron microscopy confirmed the preservation of EV integrity. The ACEV device holds great potential to revolutionize investigations of EVs. Its faster, simpler, and gentler approach to EV isolation and concentration can save time and effort in phenotypic and functional studies of EVs.


Asunto(s)
Vesículas Extracelulares , Nanosferas , Neoplasias de la Próstata , Masculino , Humanos , Microscopía por Crioelectrón , Vesículas Extracelulares/metabolismo , Línea Celular
10.
Lancet Reg Health Am ; 18: 100423, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36618081

RESUMEN

Background: SOBERANA-02 is a COVID-19 conjugate vaccine (recombinant RBD conjugated to tetanus toxoid). Phases 1/2 clinical trials demonstrated high immunogenicity, promoting neutralising IgG and specific T-cell response. A third heterologous dose of SOBERANA-Plus (RBD-dimer) further increased neutralising antibodies. The aim of this study is to evaluate the safety and efficacy of two immunisation regimes: two doses of SOBERANA-02 and a heterologous three-dose combination with SOBERANA-Plus added to it. Methods: From March 8th to June 24th, 2021 we conducted in Havana, Cuba a multicentre randomised, double-blind, placebo-controlled, phase-3 trial evaluating a two doses SOBERANA-02 scheme and a heterologous scheme with one dose SOBERANA-Plus added to it (RPCEC00000354). Participants 19-80 years were randomly assigned to receiving 28 days apart either the two or three dose scheme or placebo. The main endpoint was vaccine efficacy in preventing the occurrence of RT-PCR confirmed symptomatic COVID-19 at least 14 days after the second or third dose in the per-protocol population. We also assessed efficacy against severe disease and, in all participants receiving at least one vaccine/placebo dose, safety for 28 days after each dose. Findings: We included 44,031 participants (52.0% female, 48.0% male; median age 50 years, range 19-80 years; 7.0% black, 24.0% mixed-race, 59.0% white) in a context of initial Beta VOC predominance, with this variant being partially replaced by Delta near the trial's end. Vaccine efficacy in the heterologous combination was 92.0% (95%CI 80.4-96.7) against symptomatic disease. There were no severe COVID-19 cases in the vaccine group against 6 in the placebo group. Two doses of SOBERANA-02 was 69.7% (95%CI 56.5-78.9) and 74.9% (95%CI 33.7-90.5) efficacious against symptomatic and severe COVID-19, respectively. The occurrence of serious and severe adverse events (AE) was very rare and equally distributed between placebo and vaccine groups. Solicited AEs were slightly more frequent in the vaccine group but predominantly local and mostly mild and transient. Interpretation: Our results indicate that the straightforward to manufacture SOBERANA vaccines are efficacious in a context of Beta and Delta VOC circulation, have a favourable safety profile, and may represent an attractive option for use in COVID-19 vaccination programmes. Funding: This study received funds from the National Fund for Science and Technology (FONCI-CITMA-Cuba, contract 2020-20) of the Ministry of Science, Technology and Environment of Cuba.

11.
Hum Reprod ; 37(10): 2375-2391, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36029522

RESUMEN

STUDY QUESTION: Is it possible to use free and extracellular vesicle-associated microRNAs (miRNAs) from human endometrial fluid (EF) samples as non-invasive biomarkers for implantative endometrium? SUMMARY ANSWER: The free and extracellular vesicle-associated miRNAs can be used to detect implantative endometrium in a non-invasive manner. WHAT IS KNOWN ALREADY: miRNAs and extracellular vesicles (EVs) from EF have been described as mediators of the embryo-endometrium crosstalk. Therefore, the analysis of miRNA from this fluid could become a non-invasive technique for recognizing implantative endometrium. This analysis could potentially help improve the implantation rates in ART. STUDY DESIGN, SIZE, DURATION: In this prospective study, we first optimized different protocols for EVs and miRNA analyses using the EF of a setup cohort (n = 72). Then, we examined differentially expressed miRNAs in the EF of women with successful embryo implantation (discovery cohort n = 15/validation cohort n = 30) in comparison with those for whom the implantation had failed (discovery cohort n = 15/validation cohort n = 30). Successful embryo implantation was considered when pregnancy was confirmed by vaginal ultrasound showing a gestational sac 4 weeks after embryo transfer (ET). PARTICIPANTS/MATERIALS, SETTING, METHODS: The EF of the setup cohort was obtained before starting fertility treatment during the natural cycle, 16-21 days after the beginning of menstruation. For the discovery and validation cohorts, the EF was collected from women undergoing frozen ET on Day 5, and the samples were collected immediately before ET. In this study, we compared five different methods; two of them based on direct extraction of RNA and the other three with an EV enrichment step before the RNA extraction. Small RNA sequencing was performed to determine the most efficient method and find a predictive model differentiating between implantative and non-implantative endometrium. The models were confirmed using quantitative PCR in two sets of samples (discovery and validation cohorts) with different implantation outcomes. MAIN RESULTS AND THE ROLE OF CHANCE: The protocols using EV enrichment detected more miRNAs than the methods based on direct RNA extraction. The two most efficient protocols (using polymer-based precipitation (PBP): PBP-M and PBP-N) were used to obtain two predictive models (based on three miRNAs) allowing us to distinguish between an implantative and non-implantative endometrium. The first Model 1 (PBP-M) (discovery: AUC = 0.93; P-value = 0.003; validation: AUC = 0.69; P-value = 0.019) used hsa-miR-200b-3p, hsa-miR-24-3p and hsa-miR-148b-3p. Model 2 (PBP-N) (discovery: AUC = 0.92; P-value = 0.0002; validation: AUC = 0.78; P-value = 0.0002) used hsa-miR-200b-3p, hsa-miR-24-3p and hsa-miR-99b-5p. Functional analysis of these miRNAs showed strong association with key implantation processes such as in utero embryonic development or transforming growth factor-beta signaling. LARGE SCALE DATA: The FASTQ data are available in the GEO database (access number GSE178917). LIMITATIONS, REASONS FOR CAUTION: One important factor to consider is the inherent variability among the women involved in the trial and among the transferred embryos. The embryos were pre-selected based on morphology, but neither genetic nor molecular studies were conducted, which would have improved the accuracy of our tests. In addition, a limitation in miRNA library construction is the low amount of input RNA. WIDER IMPLICATIONS OF THE FINDINGS: We describe new non-invasive protocols to analyze miRNAs from small volumes of EF. These protocols could be implemented in clinical practice to assess the status of the endometrium before attempting ET. Such evaluation could help to avoid the loss of embryos transferred to a non-implantative endometrium. STUDY FUNDING/COMPETING INTEREST(S): J.I.-P. was supported by a predoctoral grant from the Basque Government (PRE_2017_0204). This study was partially funded by the Grant for Fertility Innovation (GFI, 2011) from Merck (Darmstadt, Germany). It was also supported by the Spanish Ministry of Economy and Competitiveness MINECO within the National Plan RTI2018-094969-B-I00, the European Union's Horizon 2020 research and innovation program (860303), the Severo Ochoa Centre of Excellence Innovative Research Grant (SEV-2016-0644) and the Instituto de Salud Carlos III (PI20/01131). The funding entities did not play any role in the study design, collection, analysis and interpretation of data, writing of the report or the decision to submit the article for publication. The authors declare no competing interests.


Asunto(s)
Endometrio , MicroARNs , Biomarcadores , Femenino , Humanos , MicroARNs/genética , Polímeros , Embarazo , Estudios Prospectivos , Factores de Crecimiento Transformadores
12.
Part Fibre Toxicol ; 19(1): 49, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35854319

RESUMEN

BACKGROUND: The widespread use of nano-biomaterials (NBMs) has increased the chance of human exposure. Although ingestion is one of the major routes of exposure to NBMs, it is not thoroughly studied to date. NBMs are expected to be dramatically modified following the transit into the oral-gastric-intestinal (OGI) tract. How these transformations affect their interaction with intestinal cells is still poorly understood. NBMs of different chemical nature-lipid-surfactant nanoparticles (LSNPs), carbon nanoparticles (CNPs), surface modified Fe3O4 nanoparticles (FNPs) and hydroxyapatite nanoparticles (HNPs)-were treated in a simulated human digestive system (SHDS) and then characterised. The biological effects of SHDS-treated and untreated NBMs were evaluated on primary (HCoEpiC) and immortalised (Caco-2, HCT116) epithelial intestinal cells and on an intestinal barrier model. RESULTS: The application of the in vitro SDHS modified the biocompatibility of NBMs on gastrointestinal cells. The differences between SHDS-treated and untreated NBMs could be attributed to the irreversible modification of the NBMs in the SHDS. Aggregation was detected for all NBMs regardless of their chemical nature, while pH- or enzyme-mediated partial degradation was detected for hydroxyapatite or polymer-coated iron oxide nanoparticles and lipid nanoparticles, respectively. The formation of a bio-corona, which contains proteases, was also demonstrated on all the analysed NBMs. In viability assays, undifferentiated primary cells were more sensitive than immortalised cells to digested NBMs, but neither pristine nor treated NBMs affected the intestinal barrier viability and permeability. SHDS-treated NBMs up-regulated the tight junction genes (claudin 3 and 5, occludin, zonula occludens 1) in intestinal barrier, with different patterns between each NBM, and increase the expression of both pro- and anti-inflammatory cytokines (IL-1ß, TNF-α, IL-22, IL-10). Notably, none of these NBMs showed any significant genotoxic effect. CONCLUSIONS: Overall, the results add a piece of evidence on the importance of applying validated in vitro SHDS models for the assessment of NBM intestinal toxicity/biocompatibility. We propose the association of chemical and microscopic characterization, SHDS and in vitro tests on both immortalised and primary cells as a robust screening pipeline useful to monitor the changes in the physico-chemical properties of ingested NBMs and their effects on intestinal cells.


Asunto(s)
Materiales Biocompatibles , Mucosa Intestinal , Materiales Biocompatibles/farmacología , Células CACO-2 , Digestión , Humanos , Hidroxiapatitas/farmacología , Liposomas , Nanopartículas , Permeabilidad , Uniones Estrechas
13.
Front Bioeng Biotechnol ; 10: 882363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35747492

RESUMEN

Poly (ethylene glycol) (PEG) is a widely used polymer in a variety of consumer products and in medicine. PEGylation refers to the conjugation of PEG to drugs or nanoparticles to increase circulation time and reduce unwanted host responses. PEG is viewed as being well-tolerated, but previous studies have identified anti-PEG antibodies and so-called pseudoallergic reactions in certain individuals. The increased use of nanoparticles as contrast agents or in drug delivery, along with the introduction of mRNA vaccines encapsulated in PEGylated lipid nanoparticles has brought this issue to the fore. Thus, while these vaccines have proven to be remarkably effective, rare cases of anaphylaxis have been reported, and this has been tentatively ascribed to the PEGylated carriers, which may trigger complement activation in susceptible individuals. Here, we provide a general overview of the use of PEGylated nanoparticles for pharmaceutical applications, and we discuss the activation of the complement cascade that might be caused by PEGylated nanomedicines for a better understanding of these immunological adverse reactions.

14.
Cells ; 10(11)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34831110

RESUMEN

Cancer multidrug resistance (MDR) is one of the main challenges for cancer treatment efficacy. MDR is a phenomenon by which tumor cells become resistant to several unrelated drugs. Some studies have previously described the important role of extracellular vesicles (EVs) in the dissemination of a MDR phenotype. EVs' cargo may include different players of MDR, such as microRNAS and drug-efflux pumps, which may be transferred from donor MDR cells to recipient drug-sensitive counterparts. The present work aimed to: (i) compare the ability of drug-sensitive and their MDR counterpart cells to release and capture EVs and (ii) study and relate those differences with possible distinct fate of the endocytic pathway in these counterpart cells. Our results showed that MDR cells released more EVs than their drug-sensitive counterparts and also that the drug-sensitive cells captured more EVs than their MDR counterparts. This difference in the release and capture of EVs may be associated with differences in the endocytic pathway between drug-sensitive and MDR cells. Importantly, manipulation of the recycling pathway influenced the response of drug-sensitive cells to doxorubicin treatment.


Asunto(s)
Resistencia a Múltiples Medicamentos , Vesículas Extracelulares/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Clorobenzoatos/farmacología , Cinamatos/farmacología , Doxorrubicina/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Endocitosis/efectos de los fármacos , Vesículas Extracelulares/efectos de los fármacos , Humanos , Proteínas de la Membrana/metabolismo , ortoaminobenzoatos/farmacología
15.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638405

RESUMEN

Head and Neck Cancer (HNC) is the seventh most common cancer worldwide with a 5-year survival from diagnosis of 50%. Currently, HNC is diagnosed by a physical examination followed by an histological biopsy, with surgery being the primary treatment. Here, we propose the use of targeted nanotechnology in support of existing diagnostic and therapeutic tools to prevent recurrences of tumors with poorly defined or surgically inaccessible margins. We have designed an innocuous ligand-protein, based on the receptor-binding domain of the Shiga toxin (ShTxB), that specifically drives nanoparticles to HNC cells bearing the globotriaosylceramide receptor on their surfaces. Microscopy images show how, upon binding to the receptor, the ShTxB-coated nanoparticles cause the clustering of the globotriaosylceramide receptors, the protrusion of filopodia, and rippling of the membrane, ultimately allowing the penetration of the ShTxB nanoparticles directly into the cell cytoplasm, thus triggering a biomimetic cellular response indistinguishable from that triggered by the full-length Shiga toxin. This functionalization strategy is a clear example of how some toxin fragments can be used as natural biosensors for the detection of some localized cancers and to target nanomedicines to HNC lesions.

16.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34281276

RESUMEN

Extracellular vesicles (EVs) are membranous, rounded vesicles released by prokaryotic and eukaryotic cells in their normal and pathophysiological states. These vesicles form a network of intercellular communication as they can transfer cell- and function-specific information (lipids, proteins and nucleic acids) to different cells and thus alter their function. Fungi are not an exception; they also release EVs to the extracellular space. The vesicles can also be retained in the periplasm as periplasmic vesicles (PVs) and the cell wall. Such fungal vesicles play various specific roles in the lives of these organisms. They are involved in creating wall architecture and maintaining its integrity, supporting cell isolation and defence against the environment. In the case of pathogenic strains, they might take part in the interactions with the host and affect the infection outcomes. The economic importance of fungi in manufacturing high-quality nutritional and pharmaceutical products and in remediation is considerable. The analysis of fungal EVs opens new horizons for diagnosing fungal infections and developing vaccines against mycoses and novel applications of nanotherapy and sensors in industrial processes.


Asunto(s)
Vesículas Extracelulares/fisiología , Hongos/fisiología , Transporte Biológico Activo , Vesículas Extracelulares/genética , Vesículas Extracelulares/inmunología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hongos/genética , Hongos/patogenicidad , Genes Fúngicos , Interacciones Microbiota-Huesped/inmunología , Interacciones Microbiota-Huesped/fisiología , Humanos , Modelos Biológicos , Micosis/diagnóstico , Micosis/microbiología , ARN de Hongos/genética , ARN de Hongos/metabolismo
17.
Int J Biol Sci ; 17(8): 1864-1877, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34131392

RESUMEN

Alcohol abuse has a high impact on the mortality and morbidity related to a great number of diseases and is responsible for the development of alcoholic liver disease (ALD). It remains challenging to detect and evaluate its severity, which is crucial for prognosis. In this work, we studied if urinary EVs (uEVs) could serve in diagnose and evaluate cirrhosis in ALD. To this purpose, uEVs characterization by cryo-electron microscopy (Cryo-EM), Nanoparticle Tracking Analysis (NTA) and Western blotting (WB) was performed in a cohort of 21 controls and 21 cirrhotic patients. Then, proteomics of uEVs was carried out in a second cohort of 6 controls and 8 patients in order to identify new putative biomarkers for cirrhosis in ALD. Interestingly, uEVs concentration, size and protein composition were altered in cirrhotic patients. From a total of 1304 proteins identified in uEVs, 90 of them were found to be altered in cirrhotic patients. The results suggest that uEVs could be considered as a tool and a supplier of new biomarkers for cirrhosis in ALD, whose application would be especially relevant in chronic patients. Yet, further research is necessary to obtain more relevant result in clinical terms.


Asunto(s)
Vesículas Extracelulares/metabolismo , Cirrosis Hepática , Hepatopatías Alcohólicas , Urinálisis/métodos , Sistema Urinario/metabolismo , Biomarcadores/metabolismo , Western Blotting/métodos , Microscopía por Crioelectrón/métodos , Diagnóstico Precoz , Humanos , Biopsia Líquida/métodos , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/etiología , Cirrosis Hepática/orina , Hepatopatías Alcohólicas/complicaciones , Hepatopatías Alcohólicas/diagnóstico , Hepatopatías Alcohólicas/orina , Masculino , Persona de Mediana Edad , Proyectos Piloto , Proteómica/métodos , Proteómica/tendencias , Reproducibilidad de los Resultados
18.
J Nanobiotechnology ; 19(1): 129, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952241

RESUMEN

BACKGROUND: The intrinsic physicochemical properties of carbon nanotubes (CNTs) make them unique tools in nanotechnology. Their elemental composition, resilience, thermal properties, and surface reactivity make CNTs also of undisputed interest in biotechnology. In particular, their extraordinary ability to capture biomolecules on their surface makes them essential in this field. The proteins adsorbed on the CNTs create a biological coating that endows them the ability to interact with some cell receptors, penetrate membranes or interfere with cell biomechanics, thus behaving as an active bio-camouflage. But some of these proteins unfold, triggering an immune response that unpredictably changes the biological activity of CNTs. For this reason, the control of the biocorona is fundamental in the nanobiotechnology of CNTs. RESULTS: Using TEM and AFM here we demonstrate a significant increase in CNTs diameter after protein functionalization. A quantitative analysis using TGA revealed that between 20 and 60% of the mass of functionalized nanotubes corresponds to protein, with single-walled CNTs capturing the highest amounts. To qualitatively/quantitatively characterize these biocoatings, we studied the biochemical "landscape" of the proteins captured by the different nanotubes after functionalization under various conditions. This study revealed a significant variability of the proteins in the corona as a function of the type of nanotube, the functionalization temperature, or the time after exposure to serum. Remarkably, the functionalization of a single type of CNT with sera from various human donors also resulted in different protein landscapes. Given the unpredictable assortment of proteins captured by the corona and the biological implications of this biocoating, we finally designed a method to genetically engineer and produce proteins to functionalize nanotubes in a controlled and customizable way. CONCLUSIONS: We demonstrate the high unpredictability of the spontaneous protein corona on CNTs and propose a versatile functionalization technique that prevents the binding of nonspecific proteins to the nanotube to improve the use of CNTs in biomedical applications.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Proteínas Sanguíneas , Nanotecnología/métodos , Nanotubos de Carbono/química , Adsorción , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Humanos , Corona de Proteínas , Suero/química
19.
Pharmacol Ther ; 218: 107683, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32961265

RESUMEN

Since the first descriptions of hepatocyte-released exosome-like vesicles in 2008, the number of publications describing Extracellular Vesicles (EVs) released by liver cells in the context of hepatic physiology and pathology has grown exponentially. This growing interest highlights both the importance that cell-to-cell communication has in the organization of multicellular organisms from a physiological point of view, as well as the opportunity that these circulating organelles offer in diagnostics and therapeutics. In the present review, we summarize systematically and comprehensively the myriad of works that appeared in the last decade and lighted the discussion about the best opportunities for using EVs in liver disease therapeutics.


Asunto(s)
Vesículas Extracelulares , Gastroenterología , Comunicación Celular , Sistemas de Liberación de Medicamentos , Exosomas , Vesículas Extracelulares/patología , Vesículas Extracelulares/fisiología , Humanos , Hepatopatías/tratamiento farmacológico
20.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339139

RESUMEN

There are many nanoencapsulation systems available today. Among all these, mesoporous silica particles (MSPs) have received great attention in the last few years. Their large surface-to-volume ratio, biocompatibility, and versatility allow the encapsulation of a wide variety of drugs inside their pores. However, their chemical instability in biological fluids is a handicap to program the precise release of the therapeutic compounds. Taking advantage of the dissolving capacity of silica, in this study, we generate hollow capsules using MSPs as transitory sacrificial templates. We show how, upon MSP coating with different polyelectrolytes or proteins, fully customized hollow shells can be produced. These capsules are biocompatible, flexible, and biodegradable, and can be decorated with nanoparticles or carbon nanotubes to endow the systems with supplementary intrinsic properties. We also fill the capsules with a fluorescent dye to demonstrate intracellular compound release. Finally, we document how fluorescent polymeric capsules are engulfed by cells, releasing their encapsulated agent during the first 96 h. In summary, here, we describe how to assemble a highly versatile encapsulation structure based on silica mesoporous cores that are completely removed from the final polymeric capsule system. These drug encapsulation systems are highly customizable and have great versatility as they can be made using silica cores of different sizes and multiple coatings. This provides capsules with unique programmable attributes that are fully customizable according to the specific needs of each disease or target tissue for the development of nanocarriers in personalized medicine.


Asunto(s)
Nanocápsulas/química , Dióxido de Silicio/química , Liberación de Fármacos , Colorantes Fluorescentes/administración & dosificación , Células HeLa , Humanos , Polielectrolitos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...