Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 596(7872): 393-397, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34349265

RESUMEN

Reproductive longevity is essential for fertility and influences healthy ageing in women1,2, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations3. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.


Asunto(s)
Envejecimiento/genética , Ovario/metabolismo , Adulto , Alelos , Animales , Huesos/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa de Punto de Control 2/genética , Diabetes Mellitus Tipo 2 , Dieta , Europa (Continente)/etnología , Asia Oriental/etnología , Femenino , Fertilidad/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Envejecimiento Saludable/genética , Humanos , Longevidad/genética , Menopausia/genética , Menopausia Prematura/genética , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Insuficiencia Ovárica Primaria/genética , Útero
2.
Nat Cell Biol ; 22(4): 380-388, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32231309

RESUMEN

The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging1-4. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change5, whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters6. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3)1,2. It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells7. Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo.


Asunto(s)
Histona Demetilasas/metabolismo , Histonas/metabolismo , Oocitos/metabolismo , Procesamiento Proteico-Postraduccional , Cigoto/metabolismo , Animales , Implantación del Embrión , Embrión de Mamíferos , Femenino , Fertilización/genética , Heterocromatina/química , Heterocromatina/metabolismo , Histona Demetilasas/genética , Histonas/genética , Masculino , Metafase , Metilación , Ratones , Ratones Noqueados , Oocitos/citología , Oocitos/crecimiento & desarrollo , Regiones Promotoras Genéticas , Transcripción Genética , Cigoto/citología , Cigoto/crecimiento & desarrollo
3.
Elife ; 92020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32163370

RESUMEN

Unrepaired DNA damage during embryonic development can be potentially inherited by a large population of cells. However, the quality control mechanisms that minimize the contribution of damaged cells to developing embryos remain poorly understood. Here, we uncovered an ATR- and CHK1-mediated transcriptional response to replication stress (RS) in mouse embryonic stem cells (ESCs) that induces genes expressed in totipotent two-cell (2C) stage embryos and 2C-like cells. This response is mediated by Dux, a multicopy retrogene defining the cleavage-specific transcriptional program in placental mammals. In response to RS, DUX triggers the transcription of 2C-like markers such as murine endogenous retrovirus-like elements (MERVL) and Zscan4. This response can also be elicited by ETAA1-mediated ATR activation in the absence of RS. ATR-mediated activation of DUX requires GRSF1-dependent post-transcriptional regulation of Dux mRNA. Strikingly, activation of ATR expands ESCs fate potential by extending their contribution to both embryonic and extra-embryonic tissues. These findings define a novel ATR dependent pathway involved in maintaining genome stability in developing embryos by controlling ESCs fate in response to RS.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Diferenciación Celular , Proliferación Celular/fisiología , Células Cultivadas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quimera , Cromatografía Liquida , Clonación Molecular , Daño del ADN , Células Madre Embrionarias , Regulación de la Expresión Génica , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Espectrometría de Masas en Tándem
4.
Development ; 144(18): 3264-3277, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28827393

RESUMEN

Regulation of chromatin composition through post-translational modifications of histones contributes to transcriptional regulation and is essential for many cellular processes, including differentiation and development. KDM4A (JMJD2A) is a lysine demethylase with specificity towards di- and tri-methylated lysine 9 and lysine 36 of histone H3 (H3K9me2/me3 and H3K36me2/me3). Here, we report that Kdm4a as a maternal factor plays a key role in embryo survival and is vital for female fertility. Kdm4a-/- female mice ovulate normally with comparable fertilization but poor implantation rates, and cannot support healthy transplanted embryos to term. This is due to a role for Kdm4a in uterine function, where its loss causes reduced expression of key genes involved in ion transport, nutrient supply and cytokine signalling, which impact embryo survival. In addition, a significant proportion of Kdm4a-deficient oocytes displays a poor intrinsic ability to develop into blastocysts. These embryos cannot compete with healthy embryos for implantation in vivo, highlighting Kdm4a as a maternal effect gene. Thus, our study dissects an important dual role for maternal Kdm4a in determining faithful early embryonic development and the implantation process.


Asunto(s)
Implantación del Embrión , Histona Demetilasas/metabolismo , Animales , Citocinas/metabolismo , Implantación del Embrión/genética , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genitales Femeninos/metabolismo , Infertilidad Femenina/genética , Infertilidad Femenina/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Transducción de Señal , Útero/metabolismo , Cigoto/metabolismo
5.
PLoS Biol ; 15(7): e2000737, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28700688

RESUMEN

Early mammalian development is both highly regulative and self-organizing. It involves the interplay of cell position, predetermined gene regulatory networks, and environmental interactions to generate the physical arrangement of the blastocyst with precise timing. However, this process occurs in the absence of maternal information and in the presence of transcriptional stochasticity. How does the preimplantation embryo ensure robust, reproducible development in this context? It utilizes a versatile toolbox that includes complex intracellular networks coupled to cell-cell communication, segregation by differential adhesion, and apoptosis. Here, we ask whether a minimal set of developmental rules based on this toolbox is sufficient for successful blastocyst development, and to what extent these rules can explain mutant and experimental phenotypes. We implemented experimentally reported mechanisms for polarity, cell-cell signaling, adhesion, and apoptosis as a set of developmental rules in an agent-based in silico model of physically interacting cells. We find that this model quantitatively reproduces specific mutant phenotypes and provides an explanation for the emergence of heterogeneity without requiring any initial transcriptional variation. It also suggests that a fixed time point for the cells' competence of fibroblast growth factor (FGF)/extracellular signal-regulated kinase (ERK) sets an embryonic clock that enables certain scaling phenomena, a concept that we evaluate quantitatively by manipulating embryos in vitro. Based on these observations, we conclude that the minimal set of rules enables the embryo to experiment with stochastic gene expression and could provide the robustness necessary for the evolutionary diversification of the preimplantation gene regulatory network.


Asunto(s)
Comunicación Celular , Simulación por Computador , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Mamíferos/embriología , Animales , Polaridad Celular , Modelos Biológicos , Transducción de Señal , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...