Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 186: 161-9, 2011 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-21463665

RESUMEN

Peroxisome proliferator-activated receptor alpha (PPAR-α), which is expressed by neurons of the nigrostriatal circuit, plays a prominent role in oxidative stress and neuroinflammation. The objectives were: (i) to discern if levels of antioxidant molecules and pro-inflammatory cytokines, along with PPAR-γ expression are modified in the nigrostriatal region of null PPAR-α mice, (ii) to discern whether dopaminergic neuronal features of the substantia nigra pars compacta (SNpc) and dorsal striatum are affected in null mice, and (iii) to establish if aging-induced decline of nigral neurons is different in null PPAR-α mice relative to wild-type littermates. A substantial decrease in antioxidant molecules was found in SNpc of null mice, by using ELISA. The pro-inflammatory factors TNF-α and IL-3 were found to be reduced in the substantia nigra, suggesting dual and opposite effects of PPAR-α deficiency on oxidative and pro-inflammatory molecules. Immunohistological and stereological studies revealed that young null mice present a smaller SNpc (-19.8%; TH downregulation was discarded). Normal locomotion in an open-field was not affected in null mice. Dopamine cell death could be caused by reduced protection against oxidative stress. Old null mice showed a percentage reduction of nigral dopamine neurons similar to that of young null animals, with a rate of decline over life of around 44%, the same value than that of wild-type littermates. These findings suggest that nuclear PPAR-α is necessary for the normal development of the substantia nigra along with normal levels of antioxidant molecules. Lack of PPAR-α does not modify the normal motor behavior of mice or decline of nigral dopamine neurons throughout life.


Asunto(s)
Actividad Motora/fisiología , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/fisiopatología , Neuronas/metabolismo , PPAR alfa/genética , Sustancia Negra/patología , Animales , Antioxidantes/fisiología , Dopamina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Malformaciones del Sistema Nervioso/patología , Neuronas/patología , PPAR alfa/deficiencia , PPAR alfa/fisiología , Sustancia Negra/fisiología
2.
Neuropharmacology ; 56(3): 653-64, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19070629

RESUMEN

Oleoylethanolamide (OEA), agonist of nuclear PPAR-alpha receptors and antagonist of vanilloid TRPV1 receptors, has been reported to show cytoprotective properties. In this study, OEA-induced neuroprotection has been tested in vitro and in vivo models of 6-OHDA-induced degeneration of substantia nigra dopamine neurons. First, PPAR-alpha receptors were confirmed to be located in the nigrostriatal circuit, these receptors being expressed by dopamine neurons of the substantia nigra, and intrinsic neurons and fibers bundles of the dorsal striatum. In the substantia nigra, their location was confined to the ventral tier. The in vitro study showed that 1 microM OEA exerted a significantly neuroprotective effect on cultured nigral dopamine neurons, effects following U-shaped dose-response curves. Regarding the in vivo study, rats were locally injected with OEA into the right striatum and vehicle into the left striatum 30 min before 6-OHDA-induced striatal lesion. In the short term, signals of heme oxygenase-1 (oxidation marker, 24 and 48 h post-lesion) and OX6 (reactive microglia marker, 96 h post-lesion) were found to be significantly less intense in the striatum pretreated with 5 microM OEA. In the long term (1 month), reduction in striatal TH and synaptophysin was less intense whether the right striatum was pretreated with 5 microM OEA, and nigral TH+ neuron death was significantly reduced after pretreatment with 1 and 5 microM OEA. In vivo effects also followed U-shaped dose-response curves. In conclusion, OEA shows U-shaped partial and dose-dependent neuroprotective properties both in vitro and in vivo models of substantia nigra dopamine neuron degeneration. The occurrence of U-shaped dose-response relationships normally suggests toxicity due to high drug concentration or that opposing intracellular pathways are activated by different OEA doses.


Asunto(s)
Dopamina/metabolismo , Degeneración Nerviosa/prevención & control , Fármacos Neuroprotectores/uso terapéutico , Ácidos Oléicos/uso terapéutico , Sustancia Negra/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Endocannabinoides , Masculino , Degeneración Nerviosa/inducido químicamente , Neuronas/metabolismo , Oxidopamina , PPAR alfa/metabolismo , Ratas , Ratas Wistar , Sustancia Negra/efectos de los fármacos , Sinaptofisina/metabolismo
3.
Neurobiol Dis ; 29(3): 529-42, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18206378

RESUMEN

The objective was to discern the neuroregenerative effect of grafts of extra-adrenal cells of the Zuckerkandl's paraganglion (ZP) in the nigrostriatal circuit, by using the retrograde model of parkinsonism in rats. The antiparkinsonian efficacy of two types of grafting procedures was studied (cell aggregates vs. dispersed cells), and GDNF and TGFbeta(1) (dopaminotrophic factors) as well as dopamine presence in extra-adrenal tissue was analyzed. Extra-adrenal chromaffin cells are noradrenergics, tissue dopamine is low, and they express both GDNF and TGFbeta(1). Grafts of cell aggregates, not of dispersed cells, exerted a trophic regeneration of the host striatum, leading to amelioration of motor deficits. Sprouting of spared dopaminergic fibers within the striatum, reduction of dopamine axon degeneration, and/or enhanced phenotypic expression of TH would explain striatal regeneration. Grafted cells as aggregates showed a better survival rate than dispersed cells, and they express higher levels of GDNF. Higher survivability and GDNF content together with the neurorestorative and dopaminotrophic action of both GDNF and TGFbeta(1) could account for striatal recovery and functional amelioration after grafting ZP cell aggregates. Finally, nigral degeneration and partial degeneration of ventral tegmental area were not precluded after transplantation, indicating that the trophic effect of grafts was local within the host striatum.


Asunto(s)
Supervivencia de Injerto/fisiología , Cuerpos Paraaórticos/citología , Cuerpos Paraaórticos/trasplante , Trastornos Parkinsonianos/cirugía , Trasplantes , Animales , Células Cultivadas , Células Cromafines/citología , Células Cromafines/trasplante , Cuerpo Estriado/patología , Cuerpo Estriado/cirugía , Masculino , Paraganglios Cromafines/citología , Paraganglios Cromafines/trasplante , Trastornos Parkinsonianos/patología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...