Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 180: 117459, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39305815

RESUMEN

Postoperative pain management is challenging. We used mice with a transverse laparotomy to study tactile allodynia measured by the von Frey test, pain at rest measured by facial pain expressions detected by an artificial intelligence algorithm, and movement-induced pain measured by reductions in exploratory activity. The standard analgesics morphine and ibuprofen induced distinct patterns of outcome-dependent effects. Whereas morphine was more effective in reversing pain at rest compared to tactile allodynia, it was unable to alter movement-induced pain. Ibuprofen showed comparable effects across the three outcomes. Administered together, the compounds induced synergistic effects in the three aspects of postoperative pain, mirroring the known advantages of multimodal analgesia used in clinical practice. We explored the impact of neuroimmune interactions using a neutrophil depletion strategy. This reversed pain at rest and movement-induced pain, but did not alter cutaneous sensitivity. Non-peptidergic (IB4+) and peptidergic (CGRP+) nociceptors are segregated neuronal populations in the mouse. We tested the effects of gefapixant, an antitussive drug targeting non-peptidergic nociceptors through P2X3 antagonism, and olcegepant, an antimigraine drug acting as a CGRP antagonist. Both compounds reversed tactile allodynia, while only gefapixant reversed pain at rest, and none of them reversed movement-induced pain. In conclusion, tactile allodynia, pain at rest, and movement-induced pain after surgery have different pharmacological profiles, and none of the three aspects of postoperative pain can predict the effects of a given intervention on the other two. Combining these measures provides a more realistic view of postoperative pain and has the potential to benefit analgesic development.

2.
J Neuroimmune Pharmacol ; 19(1): 46, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162886

RESUMEN

The mechanisms for neuropathic pain amelioration by sigma-1 receptor inhibition are not fully understood. We studied genome-wide transcriptomic changes (RNAseq) in the dorsal root ganglia (DRG) from wild-type and sigma-1 receptor knockout mice prior to and following Spared Nerve Injury (SNI). In wildtype mice, most of the transcriptomic changes following SNI are related to the immune function or neurotransmission. Immune function transcripts contain cytokines and markers for immune cells, including macrophages/monocytes and CD4 + T cells. Many of these immune transcripts were attenuated by sigma-1 knockout in response to SNI. Consistent with this we found, using flow cytometry, that sigma-1 knockout mice showed a reduction in macrophage/monocyte recruitment as well as an absence of CD4 + T cell recruitment in the DRG after nerve injury. Sigma-1 knockout mice showed a reduction of neuropathic (mechanical and cold) allodynia and spontaneous pain-like responses (licking of the injured paw) which accompany the decreased peripheral neuroinflammatory response after nerve injury. Treatment with maraviroc (a CCR5 antagonist which preferentially inhibits CD4 + T cells in the periphery) of neuropathic wild-type mice only partially replicated the sigma-1 knockout phenotype, as it did not alter cold allodynia but attenuated spontaneous pain-like responses and mechanical hypersensitivity. Therefore, modulation of peripheral CD4 + T cell activity might contribute to the amelioration of spontaneous pain and neuropathic tactile allodynia seen in the sigma-1 receptor knockout mice, but not to the effect on cold allodynia. We conclude that sigma-1 receptor inhibition decreases DRG neuroinflammation which might partially explain its anti-neuropathic effect.


Asunto(s)
Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia , Receptores sigma , Receptor Sigma-1 , Transcriptoma , Animales , Femenino , Ratones , Ganglios Espinales/metabolismo , Neuralgia/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Receptores sigma/genética , Receptores sigma/metabolismo , Receptores sigma/antagonistas & inhibidores
4.
Animals (Basel) ; 14(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38473178

RESUMEN

Most of the previous studies on the genetic variability in Spanish "Berrenda" breeds have been carried out using DNA microsatellites. The present work aimed to estimate the genetic diversity, population structure, and potential genetic differences among individuals of both Berrenda breeds and groups based on the presence of the Robertsonian chromosomal translocation, rob (1;29). A total of 373 samples from animals belonging to the two breeds, including 169 cases diagnosed as rob (1;29)-positive, were genotyped using an SNP50K chip. The genetic diversity at the breed level did not show significant differences, but it was significantly lower in those subpopulations containing the rob (1;29). Runs of homozygosity identified a region of homozygosity on chromosome 6, where the KIT (KIT proto-oncogene, receptor tyrosine kinase) gene, which determines the typical spotted coat pattern in both breeds, is located. The four subpopulations considered showed minor genetic differences. The regions of the genome that most determined the differences between the breeds were observed on chromosomes 4, 6, 18, and 22. The presence of this Robertsonian translocation did not result in sub-structuring within each of the breeds considered. To improve the reproductive performance of Berrenda breeds, it would be necessary to implement strategies considering the involvement of potential breeding stock carrying rob (1;29).

5.
Front Pharmacol ; 15: 1352464, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464715

RESUMEN

Chronic pain occurs at epidemic levels throughout the population. Hypersensitivity to touch, is a cardinal symptom of chronic pain. Despite dedicated research for over a century, quantifying this hypersensitivity has remained impossible at scale. To address these issues, we developed the Chainmail Sensitivity Test (CST). Our results show that control mice spend significantly more time on the chainmail portion of the device than mice subject to neuropathy. Treatment with gabapentin abolishes this difference. CST-derived data correlate well with von Frey measurements and quantify hypersensitivity due to inflammation. Our study demonstrates the potential of the CST as a standardized tool for assessing mechanical hypersensitivity in mice with minimal operator input.

6.
J Med Chem ; 66(16): 11447-11463, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37535861

RESUMEN

The design and synthesis of a series of 2,7-diazaspiro[4.4]nonane derivatives as potent sigma receptor (SR) ligands, associated with analgesic activity, are the focus of this work. In this study, affinities at S1R and S2R were measured, and molecular modeling studies were performed to investigate the binding pose characteristics. The most promising compounds were subjected to in vitro toxicity testing and subsequently screened for in vivo analgesic properties. Compound 9d (AD258) exhibited negligible in vitro cellular toxicity and a high binding affinity to both SRs (KiS1R = 3.5 nM, KiS2R = 2.6 nM), but not for other pain-related targets, and exerted high potency in a model of capsaicin-induced allodynia, reaching the maximum antiallodynic effect at very low doses (0.6-1.25 mg/kg). Functional activity experiments showed that S1R antagonism is needed for the effects of 9d and that it did not induce motor impairment. In addition, 9d exhibited a favorable pharmacokinetic profile.


Asunto(s)
Receptores sigma , Humanos , Ligandos , Receptores sigma/metabolismo , Unión Proteica , Dolor , Analgésicos/farmacología , Analgésicos/uso terapéutico
7.
ACS Chem Neurosci ; 14(10): 1845-1858, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37155827

RESUMEN

The development of diazabicyclo[4.3.0]nonane and 2,7-diazaspiro[3.5]nonane derivatives as sigma receptors (SRs) ligands is reported. The compounds were evaluated in S1R and S2R binding assays, and modeling studies were carried out to analyze the binding mode. The most notable compounds, 4b (AD186, KiS1R = 2.7 nM, KiS2R = 27 nM), 5b (AB21, KiS1R = 13 nM, KiS2R = 102 nM), and 8f (AB10, KiS1R = 10 nM, KiS2R = 165 nM), have been screened for analgesic effects in vivo, and their functional profile was determined through in vivo and in vitro models. Compounds 5b and 8f reached the maximum antiallodynic effect at 20 mg/kg. The selective S1R agonist PRE-084 completely reversed their action, indicating that the effects are entirely dependent on the S1R antagonism. Conversely, compound 4b sharing the 2,7-diazaspiro[3.5]nonane core as 5b was completely devoid of antiallodynic effect. Interestingly, compound 4b fully reversed the antiallodynic effect of BD-1063, indicating that 4b induces an S1R agonistic in vivo effect. The functional profiles were confirmed by the phenytoin assay. Our study might establish the importance of 2,7-diazaspiro[3.5]nonane core for the development of S1R compounds with specific agonist or antagonist profile and the role of the diazabicyclo[4.3.0]nonane in the development of novel SR ligands.


Asunto(s)
Receptores sigma , Ligandos , Alcanos
8.
J Med Chem ; 66(7): 4999-5020, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36946301

RESUMEN

Antagonists at σ1 receptors have great potential for the treatment of neuropathic pain. Starting from monoterpene (-)-isopulegol (1), aminodiols 8-11 were obtained and transformed into bicyclic 13-16 and tricyclic ligands 19-22. Aminodiols 8-11 showed higher σ1 affinity than the corresponding bicyclic 13-16 and tricyclic derivatives 19-22. (R)-configuration in the side chain of aminodiols (8 and 10) led to higher σ1 affinity than (S)-configuration (9 and 11). 4-Benzylpiperidines (b-series) revealed higher σ1 affinity than 4-phenylbutylamines (a-series). Aminodiol 8b showed very high σ1 affinity (Ki = 1.2 nM), excellent selectivity over σ2 receptors, and promising logD7.4 (3.05) and lipophilic ligand efficiency (5.87) values. Molecular dynamics simulations were conducted to analyze the σ1 affinity and selectivity on an atomistic level. In the capsaicin assay, 8b exhibited similar antiallodynic activity to the prototypical σ1 antagonist S1RA. The antiallodynic activity of 8b was removed by co-application of the σ1 agonist PRE-084, proving σ1 antagonism being involved in the antiallodynic effect.


Asunto(s)
Receptores sigma , Relación Estructura-Actividad , Monoterpenos Ciclohexánicos , Ligandos , Simulación de Dinámica Molecular
9.
J Pain ; 24(2): 304-319, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36183969

RESUMEN

Abdominal pain is a common feature in inflammatory bowel disease (IBD) patients, and greatly compromises their quality of life. Therefore, the identification of new therapeutic tools to reduce visceral pain is one of the main goals for IBD therapy. Minocycline, a broad-spectrum tetracycline antibiotic, has gained attention in the scientific community because of its immunomodulatory and anti-inflammatory properties. The aim of this study was to evaluate the potential of this antibiotic as a therapy for the management of visceral pain in dextran sodium sulfate (DSS)-induced colitis in mice. Preemptive treatment with minocycline markedly reduced histological features of intestinal inflammation and the expression of inflammatory markers (Tlr4, Tnfα, Il1ß, Ptgs2, Inos, Cxcl2, and Icam1), and attenuated the decrease of markers of epithelial integrity (Tjp1, Ocln, Muc2, and Muc3). In fact, minocycline restored normal epithelial permeability in colitic mice. Treatment with the antibiotic also reversed the changes in the gut microbiota profile induced by colitis. All these ameliorative effects of minocycline on both inflammation and dysbiosis correlated with a decrease in ongoing pain and referred hyperalgesia, and with the improvement of physical activity induced by the antibiotic in colitic mice. Minocycline might constitute a new therapeutic approach for the treatment of IBD-induced pain. PERSPECTIVE: This study found that the intestinal anti-inflammatory effects of minocycline ameliorate DSS-associated pain in mice. Therefore, minocycline might constitute a novel therapeutic strategy for the treatment of IBD-induced pain.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Dolor Visceral , Ratones , Animales , Minociclina/farmacología , Minociclina/uso terapéutico , Dolor Visceral/tratamiento farmacológico , Calidad de Vida , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Inflamación/tratamiento farmacológico , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colon
10.
J Med Chem ; 65(20): 13660-13680, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36222708

RESUMEN

The soluble epoxide hydrolase (sEH) has been suggested as a pharmacological target for the treatment of several diseases, including pain-related disorders. Herein, we report further medicinal chemistry around new benzohomoadamantane-based sEH inhibitors (sEHI) in order to improve the drug metabolism and pharmacokinetics properties of a previous hit. After an extensive in vitro screening cascade, molecular modeling, and in vivo pharmacokinetics studies, two candidates were evaluated in vivo in a murine model of capsaicin-induced allodynia. The two compounds showed an anti-allodynic effect in a dose-dependent manner. Moreover, the most potent compound presented robust analgesic efficacy in the cyclophosphamide-induced murine model of cystitis, a well-established model of visceral pain. Overall, these results suggest painful bladder syndrome as a new possible indication for sEHI, opening a new range of applications for them in the visceral pain field.


Asunto(s)
Epóxido Hidrolasas , Dolor Visceral , Ratones , Humanos , Animales , Urea/química , Modelos Animales de Enfermedad , Dolor Visceral/inducido químicamente , Dolor Visceral/tratamiento farmacológico , Capsaicina , Inhibidores Enzimáticos/farmacología , Analgésicos/farmacología , Analgésicos/uso terapéutico , Ciclofosfamida
11.
Pain ; 163(12): 2326-2336, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35543646

RESUMEN

ABSTRACT: The lack of sensitive and robust behavioral assessments of pain in preclinical models has been a major limitation for both pain research and the development of novel analgesics. Here, we demonstrate a novel data acquisition and analysis platform that provides automated, quantitative, and objective measures of naturalistic rodent behavior in an observer-independent and unbiased fashion. The technology records freely behaving mice, in the dark, over extended periods for continuous acquisition of 2 parallel video data streams: (1) near-infrared frustrated total internal reflection for detecting the degree, force, and timing of surface contact and (2) simultaneous ongoing video graphing of whole-body pose. Using machine vision and machine learning, we automatically extract and quantify behavioral features from these data to reveal moment-by-moment changes that capture the internal pain state of rodents in multiple pain models. We show that these voluntary pain-related behaviors are reversible by analgesics and that analgesia can be automatically and objectively differentiated from sedation. Finally, we used this approach to generate a paw luminance ratio measure that is sensitive in capturing dynamic mechanical hypersensitivity over a period and scalable for high-throughput preclinical analgesic efficacy assessment.


Asunto(s)
Analgesia , Dolor , Ratones , Animales , Dolor/diagnóstico , Dolor/tratamiento farmacológico , Manejo del Dolor , Analgésicos/farmacología , Analgésicos/uso terapéutico , Dimensión del Dolor
12.
R Soc Open Sci ; 9(4): 211787, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35425629

RESUMEN

Little is known about the structure and molecular arrangement of α- and ß-amyrin, a class of triterpenoids found within the cuticle of higher plants. Blends of both amyrin isomers with different ratios have been studied taking into consideration a combined methodology of density functional theory (DFT) calculations with experimental data from scanning electron microscopy, differential scanning calorimetry and Raman vibrational spectroscopy. Results indicate that trigonal trimeric aggregations of isomer mixtures are more stable, especially in the 1 : 2 (α : ß) ratio. A combination of Raman spectroscopy and DFT calculations has allowed to develop an equation to determine the amount of ß-amyrin in a mixed sample.

13.
Animals (Basel) ; 12(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35327192

RESUMEN

The first goal of this work was the description of a model addressed to quantify the carbon footprint in Spanish autochthonous dairy sheep farms (Manchega group), foreign dairy sheep farms (foreigners group: Lacaune and Assaf breeds), and Spanish autochthonous dairy goat farms (Florida group). The second objective was to analyze the GHG emission mitigation potential of 17 different livestock farming practices that were implemented by 36 different livestock farms, in terms of CO2e per hectare (ha), CO2e per livestock unit (LU), and CO2e per liter of fat- and protein-corrected milk (FPCM). The study showed the following results: 1.655 kg CO2e per ha, 6.397 kg CO2e per LU, and 3.78 kg CO2e per liter of FPCM in the Manchega group; 12.634 kg CO2e per ha, 7.810 CO2e kg per LU, and 2.77 kg CO2e per liter of FPCM in the Foreigners group and 1.198 kg CO2e per ha, 6.507 kg CO2e per LU, and 3.06 kg CO2e per liter of FPCM in Florida group. In summary, purchasing off-farm animal feed would increase emissions by up to 3.86%. Conversely, forage management, livestock inventory, electrical supply, and animal genetic improvement would reduce emissions by up to 6.29%, 4.3%, 3.52%, and 0.8%, respectively; finally, an average rise of 2 °C in room temperature would increase emissions by up to 0.62%.

14.
Animals (Basel) ; 12(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35158573

RESUMEN

Pedigree analyses of two endangered cattle breeds were performed in order to study the structure and the genetic variability in their populations. Pedigree data were analyzed from 12,057 individuals belonging to the "Berrenda en Negro" cattle breed (BN) and 20,389 individuals belonging to the "Berrenda en Colorado" cattle breed (BC) that were born between 1983 and 2020. BN and BC reference populations (RP) were set up by 2300 and 3988 animals, respectively. The generation interval in BN and BC reference populations was equal to 6.50 and 6.92 years, respectively. The pedigree completeness level was 82.76% in BN and 79.57% in BC. The inbreeding rates were 4.5% in BN and 3.4% in BC, respectively. The relationship among animals when they were born in different herds was 1.8% in BN and 5% in BC; these values increased to 8.5% and 7.7%, respectively when comparing animals that were born in the same herd. The effective number of founding herds was 23.9 in BN and 60.9 in BC. Number of ancestors needed to explain 50% of genes pool in the whole population was 50 and 101, in BN and in BC, respectively. The effective population size based on co-ancestries was 92.28 in BN and 169.92 in BC. The genetic variability has been maintained in both populations over time and the results of this study suggest that measures to promote the conservation of the genetic variability in these two breeds would go through for the exchange of breeding animals among farms and for monitoring the genetic contributions before implementing any selective action.

15.
Eur J Med Chem ; 230: 114113, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35065412

RESUMEN

Following the concept of conformational restriction to obtain high affinity σ1 ligands, the piperidine ring of eliprodil was replaced by the bicyclic tropane system and an exocyclic double bond was introduced. The envisaged benzylidenetropanes 9 were prepared by conversion of tropanone 10 into the racemic mixture of (Z)-14 and (E)-14. Reaction of racemate (Z)-14/(E)-14 with enantiomerically pure (R)- or (S)-configured 2-phenyloxirane provided mixtures of diastereomeric ß-aminoalcohols (R,Z)-9 and (R,E)-9 as well as (S,Z)-9 and (S,E)-9, which were separated by chiral HPLC, respectively. X-ray crystal structure analysis of (S,Z)-9 allowed the unequivocal assignment of the configuration of all four stereoisomers. In receptor binding studies with radioligands, (R,E)-9 and (S,Z)-9 showed subnanomolar σ1 affinity with eudismic ratios of 8.3 and 40. In both compounds the 4-fluorophenyl moiety is oriented towards (S)-configured C-5 of the tropane system. Both compounds display high selectivity for the σ1 receptor over the σ2 subtype but moderate selectivity over GluN2B NMDA receptors. In vivo, (R,E)-9 (Ki(σ1) = 0.80 nM) showed high antiallodynic activity in the capsaicin assay. The effect of (R,E)-9 could be reversed by pre-administration of the σ1 agonist PRE-084 confirming the σ1 antagonistic activity of (R,E)-9.


Asunto(s)
Receptores sigma , Ligandos , Unión Proteica , Receptores sigma/metabolismo , Estereoisomerismo , Relación Estructura-Actividad , Tropanos/farmacología
16.
Eur J Med Chem ; 230: 114091, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35016113

RESUMEN

The development of σ1 receptor antagonists hybridized with a H2S-donor is here reported. We aimed to obtain improved analgesic effects when compared to σ1 receptor antagonists or H2S-donors alone. In an in vivo model of sensory hypersensitivity, thioamide 1a induced analgesia which was synergistically enhanced when associated with the σ1 receptor antagonist BD-1063. The selective σ1 receptor agonist PRE-084 completely reversed this effect. Four thioamide H2S-σ1 receptor hybrids (5a-8a) and their amide derivatives (5b-8b) were synthesized. Compound 7a (AD164) robustly released H2S and showed selectivity for σ1 receptor over σ2 and opioid receptors. This compound induced marked analgesia that was reversed by PRE-084. The amide analogue 7b (AD163) showed only minimal analgesia. Further studies showed that 7a exhibited negligible acute toxicity, together with a favorable pharmacokinetic profile. To the best of our knowledge, compound 7a is the first dual-acting ligand with simultaneous H2S-release and σ1 antagonistic activities.


Asunto(s)
Sulfuro de Hidrógeno , Morfolinas/farmacología , Dolor/tratamiento farmacológico , Piperazinas/farmacología , Receptores sigma , Animales , Cobayas , Hidrógeno , Ligandos , Masculino , Ratas Sprague-Dawley , Receptores sigma/antagonistas & inhibidores , Receptor Sigma-1
17.
Toxins (Basel) ; 13(7)2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34357955

RESUMEN

Tetrodotoxin (TTX) is a potent neurotoxin found mainly in puffer fish and other marine and terrestrial animals. TTX blocks voltage-gated sodium channels (VGSCs) which are typically classified as TTX-sensitive or TTX-resistant channels. VGSCs play a key role in pain signaling and some TTX-sensitive VGSCs are highly expressed by adult primary sensory neurons. During pathological pain conditions, such as neuropathic pain, upregulation of some TTX-sensitive VGSCs, including the massive re-expression of the embryonic VGSC subtype NaV1.3 in adult primary sensory neurons, contribute to painful hypersensitization. In addition, people with loss-of-function mutations in the VGSC subtype NaV1.7 present congenital insensitive to pain. TTX displays a prominent analgesic effect in several models of neuropathic pain in rodents. According to this promising preclinical evidence, TTX is currently under clinical development for chemo-therapy-induced neuropathic pain and cancer-related pain. This review focuses primarily on the preclinical and clinical evidence that support a potential analgesic role for TTX in these pain states. In addition, we also analyze the main toxic effects that this neurotoxin produces when it is administered at therapeutic doses, and the therapeutic potential to alleviate neuropathic pain of other natural toxins that selectively block TTX-sensitive VGSCs.


Asunto(s)
Dolor en Cáncer/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Tetrodotoxina/farmacología , Analgésicos/uso terapéutico , Animales , Ganglios Espinales/efectos de los fármacos , Humanos , Hiperalgesia/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Neurotoxinas/uso terapéutico , Manejo del Dolor , Preparaciones Farmacéuticas , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio Activados por Voltaje
18.
R Soc Open Sci ; 8(6): 210162, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34109042

RESUMEN

Raw samples of oleanolic and ursolic acids, a class of terpenoid acids mainly found in the leaf and fruit cuticles of some plant species, can be defined as a blend of clusters of different conformers aggregated in dimers and tetramers by means of hydrogen bonds and stabilized by non-electrostatic interactions.

19.
Pain ; 162(6): 1758-1770, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33323889

RESUMEN

ABSTRACT: Small-fiber neuropathy (SFN), characterized by distal unmyelinated or thinly myelinated fiber loss, produces a combination of sensory dysfunction and neuropathic pain. Gain-of-function variants in the sodium channel Nav1.7 that produce dorsal root ganglion (DRG) neuron hyperexcitability are present in 5% to 10% of patients with idiopathic painful SFN. We created 2 independent knock-in mouse lines carrying the Nav1.7 I228M gain-of-function variant, found in idiopathic SFN. Whole-cell patch-clamp and multielectrode array recordings show that Nav1.7 I228M knock-in DRG neurons are hyperexcitable compared with wild-type littermate-control neurons, but despite this, Nav1.7 I228M mice do not display mechanical or thermal hyperalgesia or intraepidermal nerve fiber loss in vivo. Therefore, although these 2 Nav1.7 I228M knock-in mouse lines recapitulate the DRG neuron hyperexcitability associated with gain-of-function mutations in Nav1.7, they do not recapitulate the pain or neuropathy phenotypes seen in patients. We suggest that the relationship between hyperexcitability in sensory neurons and the pain experienced by these patients may be more complex than previously appreciated and highlights the challenges in modelling channelopathy pain disorders in mice.


Asunto(s)
Ganglios Espinales , Canal de Sodio Activado por Voltaje NAV1.7 , Animales , Mutación con Ganancia de Función , Humanos , Ratones , Canal de Sodio Activado por Voltaje NAV1.7/genética , Fenotipo , Células Receptoras Sensoriales
20.
Pharmacol Res ; 163: 105339, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33276102

RESUMEN

Immune and glial cells play a pivotal role in chronic pain. Therefore, it is possible that the pharmacological modulation of neurotransmission from an exclusively neuronal perspective may not be enough for adequate pain management, and the modulation of complex interactions between neurons and other cell types might be needed for successful pain relief. In this article, we review the current scientific evidence for the modulatory effects of sigma-1 receptors on communication between the immune and nervous systems during inflammation, as well as the influence of this receptor on peripheral and central neuroinflammation. Several experimental models of pathological pain are considered, including peripheral and central neuropathic pain, osteoarthritic, and cancer pain. Sigma-1 receptor inhibition prevents peripheral (macrophage infiltration into the dorsal root ganglion) and central (activation of microglia and astrocytes) neuroinflammation in several pain models, and enhances immune-driven peripheral opioid analgesia during painful inflammation, maximizing the analgesic potential of peripheral immune cells. Therefore, sigma-1 antagonists may constitute a new class of analgesics with an unprecedented mechanism of action and potential utility in several painful disorders.


Asunto(s)
Dolor Crónico/metabolismo , Neuralgia/metabolismo , Receptores sigma/metabolismo , Analgesia , Analgésicos/uso terapéutico , Animales , Dolor Crónico/tratamiento farmacológico , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Morfolinas/uso terapéutico , Neuralgia/tratamiento farmacológico , Neuroglía/metabolismo , Pirazoles/uso terapéutico , Receptores sigma/antagonistas & inhibidores , Caracteres Sexuales , Receptor Sigma-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...