Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1204834, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359531

RESUMEN

Introduction: The emergency use of vaccines has been the most efficient way to control the coronavirus disease 19 (COVID-19) pandemic. However, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has reduced the efficacy of currently used vaccines. The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein is the main target for virus neutralizing (VN) antibodies. Methods: A SARS-CoV-2 RBD vaccine candidate was produced in the Thermothelomyces heterothallica (formerly, Myceliophthora thermophila) C1 protein expression system and coupled to a nanoparticle. Immunogenicity and efficacy of this vaccine candidate was tested using the Syrian golden hamster (Mesocricetus auratus) infection model. Results: One dose of 10-µg RBD vaccine based on SARS-CoV-2 Wuhan strain, coupled to a nanoparticle in combination with aluminum hydroxide as adjuvant, efficiently induced VN antibodies and reduced viral load and lung damage upon SARS-CoV-2 challenge infection. The VN antibodies neutralized SARS-CoV-2 variants of concern: D614G, Alpha, Beta, Gamma, and Delta. Discussion: Our results support the use of the Thermothelomyces heterothallica C1 protein expression system to produce recombinant vaccines against SARS-CoV-2 and other virus infections to help overcome limitations associated with the use of mammalian expression system.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Cricetinae , Humanos , COVID-19/prevención & control , SARS-CoV-2/genética , Adyuvantes Inmunológicos , Anticuerpos Bloqueadores , Hongos , Mesocricetus
2.
BMJ Glob Health ; 7(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36368765

RESUMEN

INTRODUCTION: Previous research demonstrated that medical scent detection dogs have the ability to distinguish SARS-CoV-2 positive from negative samples with high diagnostic accuracy. To deploy these dogs as a reliable screening method, it is mandatory to examine if canines maintain their high diagnostic accuracy in real-life screening settings. We conducted a study to evaluate the performance of medical scent detection dogs under real-life circumstances. METHODS: Eight dogs were trained to detect SARS-CoV-2 RT-qPCR-positive samples. Four concerts with a total of 2802 participants were held to evaluate canines' performance in screening individuals for SARS-CoV-2 infection. Sweat samples were taken from all participants and presented in a line-up setting. In addition, every participant had been tested with a SARS-CoV-2 specific rapid antigen test and a RT-qPCR and they provided information regarding age, sex, vaccination status and medical disease history. The participants' infection status was unknown at the time of canine testing. Safety measures such as mask wearing and distance keeping were ensured. RESULTS: The SARS-CoV-2 detection dogs achieved a diagnostic specificity of 99.93% (95% CI 99.74% to 99.99%) and a sensitivity of 81.58% (95% CI 66.58% to 90.78%), respectively. The overall rate of concordant results was 99.68%. The majority of the study population was vaccinated with varying vaccines and vaccination schemes, while several participants had chronic diseases and were under chronic medication. This did not influence dogs' decisions. CONCLUSION: Our results demonstrate that SARS-CoV-2 scent detection dogs achieved high diagnostic accuracy in a real-life scenario. The vaccination status, previous SARS-CoV-2 infection, chronic disease and medication of the participants did not influence the performance of the dogs in detecting the acute infection. This indicates that dogs provide a fast and reliable screening option for public events in which high-throughput screening is required.


Asunto(s)
COVID-19 , Humanos , Perros , Animales , COVID-19/diagnóstico , SARS-CoV-2 , Sensibilidad y Especificidad , Tamizaje Masivo
3.
J Clin Virol ; 157: 105322, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36279696

RESUMEN

BACKGROUND: Detection of seroconversion after SARS-CoV-2-infection or vaccination is relevant to discover subclinical cases and recognize patients with a possible immunity. OBJECTIVES: Test performance, effects of age, time-point of seroconversion and immune status regarding neutralizing antibodies (NAbs) and T-cell-reactivity were investigated. STUDY DESIGN: Two antibody assays (Viramed-Test for S/N-specific IgG, Roche-Test for N-specific IgA, -M, -G) were evaluated with classified samples. In total, 381 subjects aged 6-99 years, who had either recovered from the disease or had been vaccinated, were screened for SARS-CoV-2-specific antibodies. This screening was part of an open observational study with working adults. Additionally, children and adults were analyzed in a longitudinal COVID-19 study in schools. For immunity evaluation, virus neutralization tests and ELISpot tests were performed in a subgroup of subjects. RESULTS: Viramed revealed a slightly lower test performance than Roche, but test quality was equally well in samples from very young or very old donors. The time-point of seroconversion after the respective immunization detected by the two tests was not significantly different. N-specific antibodies, detected with Roche, highly correlated with NAbs in recovered subjects, whereas a positive Viramed-Test result was paralleled by a positive ELISpot result. CONCLUSION: Viramed-Test was not as sensitive as Roche-Test, but highly specific and beneficial to distinguish between recovered and vaccinated status. For both tests correlations with humoral and cellular immunity were found. Of note, the expected early detection of IgA and IgM by the Roche-Test did not prove to be an advantage over IgG testing by Viramed.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Niño , Humanos , COVID-19/diagnóstico , Sensibilidad y Especificidad , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Inmunoglobulina G , Inmunoglobulina A
4.
Nat Commun ; 13(1): 3519, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725735

RESUMEN

Since its discovery in 2019, multiple variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been identified. This study investigates virus spread and associated pathology in the upper and lower respiratory tracts of Syrian golden hamsters at 4 days post intranasal SARS-CoV-2 Omicron infection, in comparison to infection with variants of concern (VOCs) Gamma and Delta as well as ancestral strain 614 G. Pathological changes in the upper and lower respiratory tract of VOC Omicron infected hamsters are milder than those caused by other investigated strains. VOC Omicron infection causes a mild rhinitis with little involvement of the olfactory epithelium and minimal lesions in the lung, with frequent sparing of the alveolar compartment. Similarly, viral antigen, RNA and infectious virus titers are lower in respiratory tissues of VOC Omicron infected hamsters. These findings demonstrate that the variant has a decreased pathogenicity for the upper and lower respiratory tract of hamsters.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Pulmón/patología , Mesocricetus , SARS-CoV-2/genética
5.
Sci Immunol ; 7(73): eabp9312, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35471062

RESUMEN

The ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays notable immune escape potential through mutations at key antigenic sites on the spike protein. Many of these mutations localize to the spike protein ACE2 receptor binding domain, annulling the neutralizing activity of therapeutic antibodies that were effective against other variants of concern (VOCs) earlier in the pandemic. Here, we identified a receptor-blocking human monoclonal antibody, 87G7, that retained potent in vitro neutralizing activity against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta, and Omicron (BA.1/BA.2) VOCs. Using cryo-electron microscopy and site-directed mutagenesis experiments, we showed that 87G7 targets a patch of hydrophobic residues in the ACE2-binding site that are highly conserved in SARS-CoV-2 variants, explaining its broad neutralization capacity. 87G7 protected mice and hamsters prophylactically against challenge with all current SARS-CoV-2 VOCs and showed therapeutic activity against SARS-CoV-2 challenge in both animal models. Our findings demonstrate that 87G7 holds promise as a prophylactic or therapeutic agent for COVID-19 that is more resilient to SARS-CoV-2 antigenic diversity.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Animales , Anticuerpos Neutralizantes/farmacología , Microscopía por Crioelectrón , Humanos , Glicoproteínas de Membrana , Ratones , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas del Envoltorio Viral
6.
Microbiol Spectr ; 10(1): e0151221, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35171028

RESUMEN

Despite lockdown measures, intense symptom-based PCR, and antigen testing, the SARS-CoV-2 pandemic spread further. In this open observational study conducted in Lower Saxony, Germany, voluntary SARS-CoV-2 PCR tests were performed from April 2020 until June 2021, supported by serum antibody testing to prove whether PCR testing in subjects with none or few symptoms of COVID-19 is a suitable tool to manage the pandemic. In different mobile stations, 4,817 subjects from three different working fields participated in the PCR testing. Serum antibody screening using the SARS-CoV-2 ViraChip IgG (Viramed, Germany) and the Elecsys Anti-SARS-CoV-2 assay (Roche, Germany) was performed alongside virus neutralization testing. Subjects were questioned regarding comorbidities and COVID-19 symptoms. Fifty-one subjects with acute SARS-CoV-2 infection were detected of which 31 subjects did not show any symptoms possibly characteristic for COVID-19. An additional 37 subjects reported a previous SARS-CoV-2 infection (total prevalence 1.82%). Seroconversion was discovered in 58 subjects with known SARS-CoV-2 infection and in 58 subjects that never had a positive PCR test. The latter had a significantly lower Charlson Comorbidity Index, and one third of them were asymptomatic. In 50% of all seroconverted subjects, neutralizing serum antibodies (NAbs) were detectable in parallel to N/S1 (n = 16) or N/S1/S2 antigen specific antibodies (n = 40) against SARS-CoV-2. NAb titers decreased within 100 days after PCR-confirmed SARS-CoV-2 acute infection by at least 2.5-fold. A relatively high rate of subclinical SARS-CoV-2 infections may contribute to the spread of SARS-CoV-2, suggesting that in addition to other intervention strategies, systematic screening of asymptomatic persons by PCR testing may significantly enable better pandemic control. IMPORTANCE Within this open observational study, repeated PCR (n > 4,700) and antibody screening (n > 1,600) tests were offered in three different working fields. The study identified 51 subjects with acute SARS-CoV-2 infection and 37 subjects reported to have had a positive PCR test taken externally. Thirty-one of the 51 subjects did not display any symptoms prior to testing. In addition, 58 subjects without PCR-confirmed SARS-CoV-2 infection were identified by seroconversion. Subjects, that had undergone SARS-CoV-2 infection without having noticed, more often had a low grade of immunization with no NAbs, but may have relevantly contributed to the spread of the pandemic. Based on these results, we suggest that both regular PCR and rapid test screening of symptomatic and asymptomatic individuals, specifically within groups or workplaces identifiable as having close quarter contact, thus increased infection transference risk, is necessary to better assess and therefore reduce the spread of a pandemic virus.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades Asintomáticas , COVID-19/sangre , Prueba Serológica para COVID-19 , Alemania/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Estudios Prospectivos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Seroconversión , Adulto Joven
7.
Emerg Infect Dis ; 27(12): 3115-3118, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695368

RESUMEN

We conducted a severe acute respiratory syndrome coronavirus 2 antibody seroprevalence study among >2,000 domestic cats from 4 countries during the first coronavirus disease wave in Europe. We found 4.4% seroprevalence using a virus neutralization test and 4.3% using a receptor-binding domain ELISA, demonstrating probable human-to-cat transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Antivirales , Gatos , Europa (Continente)/epidemiología , Humanos , Estudios Seroepidemiológicos
8.
Virology ; 532: 22-29, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30999160

RESUMEN

Priming of the viral glycoprotein (GP) by the cellular proteases cathepsin B and L (CatB, CatL) is believed to be essential for cell entry of filoviruses. However, pseudotyping systems that predominantly produce non-filamentous particles have frequently been used to prove this concept. Here, we report that GP-mediated entry of retroviral-, rhabdoviral and filoviral particles depends on CatB/CatL activity and that this effect is cell line-independent. Moreover, we show that the human cell line Calu-3, which expresses low amounts of CatL, is largely resistant to entry driven by diverse filovirus GPs. Finally, we demonstrate that Calu-3 cell entry mediated by certain filovirus GPs can be rescued upon directed expression of CatL or DC-SIGN. Our results identify Calu-3 cells as largely resistant to filovirus GP-driven entry and demonstrate that entry is limited at the stage of virion attachment and GP priming.


Asunto(s)
Catepsina L/genética , Moléculas de Adhesión Celular/genética , Ebolavirus/genética , Células Epiteliales/inmunología , Lectinas Tipo C/genética , Receptores de Superficie Celular/genética , Proteínas Virales/genética , Células A549 , Animales , Catepsina B/antagonistas & inhibidores , Catepsina B/genética , Catepsina B/inmunología , Catepsina B/metabolismo , Catepsina L/antagonistas & inhibidores , Catepsina L/inmunología , Catepsina L/metabolismo , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/inmunología , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Chlorocebus aethiops , Inhibidores de Cisteína Proteinasa/farmacología , Dipéptidos/farmacología , Ebolavirus/crecimiento & desarrollo , Ebolavirus/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/virología , Regulación de la Expresión Génica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno/genética , Humanos , Lectinas Tipo C/antagonistas & inhibidores , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Leucina/análogos & derivados , Leucina/farmacología , Marburgvirus/genética , Marburgvirus/crecimiento & desarrollo , Marburgvirus/metabolismo , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Células Vero , Vesiculovirus/genética , Vesiculovirus/crecimiento & desarrollo , Vesiculovirus/metabolismo , Proteínas Virales/metabolismo , Virión/genética , Virión/crecimiento & desarrollo , Virión/metabolismo , Internalización del Virus/efectos de los fármacos
9.
PLoS One ; 14(4): e0214968, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30973897

RESUMEN

Emerging viruses such as severe fever and thrombocytopenia syndrome virus (SFTSV) and Ebola virus (EBOV) are responsible for significant morbidity and mortality. Host cell proteases that process the glycoproteins of these viruses are potential targets for antiviral intervention. The aspartyl protease signal peptide peptidase (SPP) has recently been shown to be required for processing of the glycoprotein precursor, Gn/Gc, of Bunyamwera virus and for viral infectivity. Here, we investigated whether SPP is also required for infectivity of particles bearing SFTSV-Gn/Gc. Entry driven by the EBOV glycoprotein (GP) and the Lassa virus glycoprotein (LASV-GPC) depends on the cysteine proteases cathepsin B and L (CatB/CatL) and the serine protease subtilisin/kexin-isozyme 1 (SKI-1), respectively, and was examined in parallel for control purposes. We found that inhibition of SPP and SKI-1 did not interfere with SFTSV Gn + Gc-driven entry but, unexpectedly, blocked entry mediated by EBOV-GP. The inhibition occurred at the stage of proteolytic activation and the SPP inhibitor was found to block CatL/CatB activity. In contrast, the SKI-1 inhibitor did not interfere with CatB/CatL activity but disrupted CatB localization in endo/lysosomes, the site of EBOV-GP processing. These results underline the potential of protease inhibitors for antiviral therapy but also show that previously characterized compounds might exert broader specificity than initially appreciated and might block viral entry via diverse mechanisms.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Catepsina B/metabolismo , Catepsina L/metabolismo , Endosomas , Glicoproteínas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/genética , Células COS , Catepsina B/antagonistas & inhibidores , Catepsina B/genética , Catepsina L/antagonistas & inhibidores , Catepsina L/genética , Chlorocebus aethiops , Ebolavirus/genética , Endosomas/enzimología , Endosomas/genética , Endosomas/virología , Glicoproteínas/genética , Células HEK293 , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Células Vero , Proteínas del Envoltorio Viral/genética
10.
J Virol ; 92(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29669839

RESUMEN

The interferon-induced antiviral host cell protein tetherin can inhibit the release of several enveloped viruses from infected cells. The Ebola virus (EBOV) glycoprotein (GP) antagonizes tetherin, but the domains and amino acids in GP that are required for tetherin antagonism have not been fully defined. A GXXXA motif within the transmembrane domain (TMD) of EBOV-GP was previously shown to be important for GP-mediated cellular detachment. Here, we investigated whether this motif also contributes to tetherin antagonism. Mutation of the GXXXA motif did not impact GP expression or particle incorporation and only modestly reduced EBOV-GP-driven entry. In contrast, the GXXXA motif was required for tetherin antagonism in transfected cells. Moreover, alteration of the GXXXA motif increased tetherin sensitivity of a replication-competent vesicular stomatitis virus (VSV) chimera encoding EBOV-GP. Although these results await confirmation with authentic EBOV, they indicate that a GXXXA motif in the TMD of EBOV-GP is important for tetherin antagonism. Moreover, they provide the first evidence that GP can antagonize tetherin in the context of an infectious EBOV surrogate.IMPORTANCE The glycoprotein (GP) of Ebola virus (EBOV) inhibits the antiviral host cell protein tetherin and may promote viral spread in tetherin-positive cells. However, tetherin antagonism by GP has so far been demonstrated only with virus-like particles, and it is unknown whether GP can block tetherin in infected cells. Moreover, a mutation in GP that selectively abrogates tetherin antagonism is unknown. Here, we show that a GXXXA motif in the transmembrane domain of EBOV-GP, which was previously reported to be required for GP-mediated cell rounding, is also important for tetherin counteraction. Moreover, analysis of this mutation in the context of vesicular stomatitis virus chimeras encoding EBOV-GP revealed that GP-mediated tetherin counteraction is operative in infected cells. To our knowledge, these findings demonstrate for the first time that GP can antagonize tetherin in infected cells and provide a tool to study the impact of GP-dependent tetherin counteraction on EBOV spread.


Asunto(s)
Secuencias de Aminoácidos , Ebolavirus/fisiología , Regulación de la Expresión Génica , Glicoproteínas/metabolismo , Fiebre Hemorrágica Ebola/virología , Replicación Viral , Secuencia de Aminoácidos , Antígenos CD , Proteínas Ligadas a GPI/antagonistas & inhibidores , Glicoproteínas/genética , Células HEK293 , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/metabolismo , Interacciones Huésped-Patógeno , Humanos , Mutación , Unión Proteica , Alineación de Secuencia , Liberación del Virus
11.
J Virol ; 91(9)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28228590

RESUMEN

The large scale of the Ebola virus disease (EVD) outbreak in West Africa in 2013-2016 raised the question whether the host cell interactions of the responsible Ebola virus (EBOV) strain differed from those of other ebolaviruses. We previously reported that the glycoprotein (GP) of the virus circulating in West Africa in 2014 (EBOV2014) exhibited reduced ability to mediate entry into two nonhuman primate (NHP)-derived cell lines relative to the GP of EBOV1976. Here, we investigated the molecular determinants underlying the differential entry efficiency. We found that EBOV2014-GP-driven entry into diverse NHP-derived cell lines, as well as human monocyte-derived macrophages and dendritic cells, was reduced compared to EBOV1976-GP, although entry into most human- and all bat-derived cell lines tested was comparable. Moreover, EBOV2014 replication in NHP but not human cells was diminished relative to EBOV1976, suggesting that reduced cell entry translated into reduced viral spread. Mutagenic analysis of EBOV2014-GP and EBOV1976-GP revealed that an amino acid polymorphism in the receptor-binding domain, A82V, modulated entry efficiency in a cell line-independent manner and did not account for the reduced EBOV2014-GP-driven entry into NHP cells. In contrast, polymorphism T544I, located in the internal fusion loop in the GP2 subunit, was found to be responsible for the entry phenotype. These results suggest that position 544 is an important determinant of EBOV infectivity for both NHP and certain human target cells.IMPORTANCE The Ebola virus disease outbreak in West Africa in 2013 entailed more than 10,000 deaths. The scale of the outbreak and its dramatic impact on human health raised the question whether the responsible virus was particularly adept at infecting human cells. Our study shows that an amino acid exchange, A82V, that was acquired during the epidemic and that was not observed in previously circulating viruses, increases viral entry into diverse target cells. In contrast, the epidemic virus showed a reduced ability to enter cells of nonhuman primates compared to the virus circulating in 1976, and a single amino acid exchange in the internal fusion loop of the viral glycoprotein was found to account for this phenotype.


Asunto(s)
Sustitución de Aminoácidos/genética , Ebolavirus/patogenicidad , Proteínas del Envoltorio Viral/genética , Acoplamiento Viral , Internalización del Virus , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Ebolavirus/genética , Células HEK293 , Fiebre Hemorrágica Ebola/virología , Humanos , Macaca mulatta , Polimorfismo de Nucleótido Simple/genética , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Células Vero , Replicación Viral/genética
12.
J Virol ; 90(24): 11075-11086, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27707924

RESUMEN

The glycoprotein of Ebola virus (EBOV GP), a member of the family Filoviridae, facilitates viral entry into target cells. In addition, EBOV GP antagonizes the antiviral activity of the host cell protein tetherin, which may otherwise restrict EBOV release from infected cells. However, it is unclear how EBOV GP antagonizes tetherin, and it is unknown whether the GP of Lloviu virus (LLOV), a filovirus found in dead bats in Northern Spain, also counteracts tetherin. Here, we show that LLOV GP antagonizes tetherin, indicating that tetherin may not impede LLOV spread in human cells. Moreover, we demonstrate that appropriate processing of N-glycans in tetherin/GP-coexpressing cells is required for tetherin counteraction by EBOV GP. Furthermore, we show that an intact receptor-binding domain (RBD) in the GP1 subunit of EBOV GP is a prerequisite for tetherin counteraction. In contrast, blockade of Niemann-Pick disease type C1 (NPC1), a cellular binding partner of the RBD, did not interfere with tetherin antagonism. Finally, we provide evidence that an antibody directed against GP1, which protects mice from a lethal EBOV challenge, may block GP-dependent tetherin antagonism. Our data, in conjunction with previous reports, indicate that tetherin antagonism is conserved among the GPs of all known filoviruses and demonstrate that the GP1 subunit of EBOV GP plays a central role in tetherin antagonism. IMPORTANCE: Filoviruses are reemerging pathogens that constitute a public health threat. Understanding how Ebola virus (EBOV), a highly pathogenic filovirus responsible for the 2013-2016 Ebola virus disease epidemic in western Africa, counteracts antiviral effectors of the innate immune system might help to define novel targets for antiviral intervention. Similarly, determining whether Lloviu virus (LLOV), a filovirus detected in bats in northern Spain, is inhibited by innate antiviral effectors in human cells might help to determine whether the virus constitutes a threat to humans. The present study shows that LLOV, like EBOV, counteracts the antiviral effector protein tetherin via its glycoprotein (GP), suggesting that tetherin does not pose a defense against LLOV spread in humans. Moreover, our work identifies the GP1 subunit of EBOV GP, in particular an intact receptor-binding domain, as critical for tetherin counteraction and provides evidence that antibodies directed against GP1 can interfere with tetherin counteraction.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/farmacología , Antígenos CD/inmunología , Glicoproteínas/inmunología , Subunidades de Proteína/inmunología , Proteínas del Envoltorio Viral/inmunología , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Antígenos CD/química , Antígenos CD/genética , Ebolavirus/química , Ebolavirus/efectos de los fármacos , Ebolavirus/genética , Ebolavirus/inmunología , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Regulación de la Expresión Génica , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/química , Glicoproteínas/genética , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Polisacáridos/inmunología , Polisacáridos/metabolismo , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/genética , Alineación de Secuencia , Transducción de Señal , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Internalización del Virus , Liberación del Virus , Replicación Viral
13.
PLoS One ; 11(2): e0149651, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26901159

RESUMEN

Ebola and marburgviruses, members of the family Filoviridae, can cause severe hemorrhagic fever in humans. The ongoing Ebola virus (EBOV) disease epidemic in Western Africa claimed more than 11,300 lives and was associated with secondary cases outside Africa, demonstrating that filoviruses pose a global health threat. Bats constitute an important natural reservoir of filoviruses, including viruses of the recently identified Cuevavirus genus within the Filoviridae family. However, the interactions of filoviruses with bat cells are incompletely understood. Here, we investigated whether filoviruses employ different strategies to enter human and bat cells. For this, we examined host cell entry driven by glycoproteins (GP) from all filovirus species into cell lines of human and fruit bat origin. We show that all GPs were able to mediate entry into human and most fruit bat cell lines with roughly comparable efficiency. In contrast, the efficiency of entry into the cell line EidNi/41 derived from a straw-colored fruit bat varied markedly between the GPs of different filovirus species. Furthermore, inhibition studies demonstrated that filoviruses employ the same host cell factors for entry into human, non-human primate and fruit bat cell lines, including cysteine proteases, two pore channels and NPC1 (Niemann-Pick C1 molecule). Finally, processing of GP by furin and the presence of the mucin-like domain in GP were dispensable for entry into both human and bat cell lines. Collectively, these results show that filoviruses rely on the same host cell factors for entry into human and fruit bat cells, although the efficiency of the usage of these factors might differ between filovirus species.


Asunto(s)
Quirópteros/virología , Filoviridae/fisiología , Glicoproteínas/metabolismo , Proteolisis , Proteínas Virales/metabolismo , Internalización del Virus , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Furina/genética , Furina/metabolismo , Glicoproteínas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteína Niemann-Pick C1 , Estructura Terciaria de Proteína , Especificidad de la Especie , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA