Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(18): e2400752121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648484

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare disease caused by the expression of progerin, a mutant protein that accelerates aging and precipitates death. Given that atherosclerosis complications are the main cause of death in progeria, here, we investigated whether progerin-induced atherosclerosis is prevented in HGPSrev-Cdh5-CreERT2 and HGPSrev-SM22α-Cre mice with progerin suppression in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), respectively. HGPSrev-Cdh5-CreERT2 mice were undistinguishable from HGPSrev mice with ubiquitous progerin expression, in contrast with the ameliorated progeroid phenotype of HGPSrev-SM22α-Cre mice. To study atherosclerosis, we generated atheroprone mouse models by overexpressing a PCSK9 gain-of-function mutant. While HGPSrev-Cdh5-CreERT2 and HGPSrev mice developed a similar level of excessive atherosclerosis, plaque development in HGPSrev-SM22α-Cre mice was reduced to wild-type levels. Our studies demonstrate that progerin suppression in VSMCs, but not in ECs, prevents exacerbated atherosclerosis in progeroid mice.


Asunto(s)
Aterosclerosis , Células Endoteliales , Lamina Tipo A , Músculo Liso Vascular , Progeria , Animales , Ratones , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Progeria/metabolismo , Progeria/genética , Progeria/patología , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética
2.
Geroscience ; 46(1): 867-884, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37233881

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disease caused by expression of progerin, a lamin A variant that is also expressed at low levels in non-HGPS individuals. Although HGPS patients die predominantly from myocardial infarction and stroke, the mechanisms that provoke pathological alterations in the coronary and cerebral arteries in HGPS remain ill defined. Here, we assessed vascular function in the coronary arteries (CorAs) and carotid arteries (CarAs) of progerin-expressing LmnaG609G/G609G mice (G609G), both in resting conditions and after hypoxic stimulus. Wire myography, pharmacological screening, and gene expression studies demonstrated vascular atony and stenosis, as well as other functional alterations in progeroid CorAs and CarAs and aorta. These defects were associated with loss of vascular smooth muscle cells and overexpression of the KV7 family of voltage-dependent potassium channels. Compared with wild-type controls, G609G mice showed reduced median survival upon chronic isoproterenol exposure, a baseline state of chronic cardiac hypoxia characterized by overexpression of hypoxia-inducible factor 1α and 3α genes, and increased cardiac vascularization. Our results shed light on the mechanisms underlying progerin-induced coronary and carotid artery disease and identify KV7 channels as a candidate target for the treatment of HGPS.


Asunto(s)
Progeria , Humanos , Ratones , Animales , Progeria/genética , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Hipoxia
3.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446344

RESUMEN

Mutations in the LMNA gene (encoding lamin A/C proteins) cause several human cardiac diseases, including dilated cardiomyopathies (LMNA-DCM). The main clinical risks in LMNA-DCM patients are sudden cardiac death and progressive left ventricular ejection fraction deterioration, and therefore most human and animal studies have sought to define the mechanisms through which LMNA mutations provoke cardiac alterations, with a particular focus on cardiomyocytes. To investigate if LMNA mutations also cause vascular alterations that might contribute to the etiopathogenesis of LMNA-DCM, we generated and characterized Lmnaflox/floxSM22αCre mice, which constitutively lack lamin A/C in vascular smooth muscle cells (VSMCs), cardiac fibroblasts, and cardiomyocytes. Like mice with whole body or cardiomyocyte-specific lamin A/C ablation, Lmnaflox/floxSM22αCre mice recapitulated the main hallmarks of human LMNA-DCM, including ventricular systolic dysfunction, cardiac conduction defects, cardiac fibrosis, and premature death. These alterations were associated with elevated expression of total and phosphorylated (active) Smad3 and cleaved (active) caspase 3 in the heart. Lmnaflox/floxSM22αCre mice also exhibited perivascular fibrosis in the coronary arteries and a switch of aortic VSMCs from the 'contractile' to the 'synthetic' phenotype. Ex vivo wire myography in isolated aortic rings revealed impaired maximum contraction capacity and an altered response to vasoconstrictor and vasodilator agents in Lmnaflox/floxSM22αCre mice. To our knowledge, our results provide the first evidence of phenotypic alterations in VSMCs that might contribute significantly to the pathophysiology of some forms of LMNA-DCM. Future work addressing the mechanisms underlying vascular defects in LMNA-DCM may open new therapeutic avenues for these diseases.


Asunto(s)
Cardiomiopatía Dilatada , Miocitos Cardíacos , Humanos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Músculo Liso Vascular/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Volumen Sistólico , Función Ventricular Izquierda , Cardiomiopatía Dilatada/patología , Mutación
4.
Cardiovasc Res ; 118(2): 503-516, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33624748

RESUMEN

AIMS: Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare laminopathy caused by expression of progerin, a lamin A variant, also present at low levels in non-HGPS individuals. HGPS patients age and die prematurely, predominantly from cardiovascular complications. Progerin-induced cardiac repolarization defects have been described previously, although the underlying mechanisms are unknown. METHODS AND RESULTS: We conducted studies in heart tissue from progerin-expressing LmnaG609G/G609G (G609G) mice, including microscopy, intracellular calcium dynamics, patch-clamping, in vivo magnetic resonance imaging, and electrocardiography. G609G mouse cardiomyocytes showed tubulin-cytoskeleton disorganization, t-tubular system disruption, sarcomere shortening, altered excitation-contraction coupling, and reductions in ventricular thickening and cardiac index. G609G mice exhibited severe bradycardia, and significant alterations of atrio-ventricular conduction and repolarization. Most importantly, 50% of G609G mice had altered heart rate variability, and sinoatrial block, both significant signs of premature cardiac aging. G609G cardiomyocytes had electrophysiological alterations, which resulted in an elevated action potential plateau and early afterdepolarization bursting, reflecting slower sodium current inactivation and long Ca+2 transient duration, which may also help explain the mild QT prolongation in some HGPS patients. Chronic treatment with low-dose paclitaxel ameliorated structural and functional alterations in G609G hearts. CONCLUSIONS: Our results demonstrate that tubulin-cytoskeleton disorganization in progerin-expressing cardiomyocytes causes structural, cardiac conduction, and excitation-contraction coupling defects, all of which can be partially corrected by chronic treatment with low dose paclitaxel.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/tratamiento farmacológico , Citoesqueleto/efectos de los fármacos , Acoplamiento Excitación-Contracción/efectos de los fármacos , Sistema de Conducción Cardíaco/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Paclitaxel/farmacología , Progeria/tratamiento farmacológico , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Modelos Animales de Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Sistema de Conducción Cardíaco/metabolismo , Sistema de Conducción Cardíaco/fisiopatología , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Masculino , Ratones Mutantes , Mutación , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Progeria/genética , Progeria/metabolismo , Progeria/fisiopatología , Periodo Refractario Electrofisiológico/efectos de los fármacos , Porcinos , Porcinos Enanos , Tubulina (Proteína)/metabolismo
5.
Circulation ; 144(22): 1777-1794, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34694158

RESUMEN

BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) is a rare disorder characterized by premature aging and death mainly because of myocardial infarction, stroke, or heart failure. The disease is provoked by progerin, a variant of lamin A expressed in most differentiated cells. Patients look healthy at birth, and symptoms typically emerge in the first or second year of life. Assessing the reversibility of progerin-induced damage and the relative contribution of specific cell types is critical to determining the potential benefits of late treatment and to developing new therapies. METHODS: We used CRISPR-Cas9 technology to generate LmnaHGPSrev/HGPSrev (HGPSrev) mice engineered to ubiquitously express progerin while lacking lamin A and allowing progerin suppression and lamin A restoration in a time- and cell type-specific manner on Cre recombinase activation. We characterized the phenotype of HGPSrev mice and crossed them with Cre transgenic lines to assess the effects of suppressing progerin and restoring lamin A ubiquitously at different disease stages as well as specifically in vascular smooth muscle cells and cardiomyocytes. RESULTS: Like patients with HGPS, HGPSrev mice appear healthy at birth and progressively develop HGPS symptoms, including failure to thrive, lipodystrophy, vascular smooth muscle cell loss, vascular fibrosis, electrocardiographic anomalies, and precocious death (median lifespan of 15 months versus 26 months in wild-type controls, P<0.0001). Ubiquitous progerin suppression and lamin A restoration significantly extended lifespan when induced in 6-month-old mildly symptomatic mice and even in severely ill animals aged 13 months, although the benefit was much more pronounced on early intervention (84.5% lifespan extension in mildly symptomatic mice, P<0.0001, and 6.7% in severely ill mice, P<0.01). It is remarkable that major vascular alterations were prevented and lifespan normalized in HGPSrev mice when progerin suppression and lamin A restoration were restricted to vascular smooth muscle cells and cardiomyocytes. CONCLUSIONS: HGPSrev mice constitute a new experimental model for advancing knowledge of HGPS. Our findings suggest that it is never too late to treat HGPS, although benefit is much more pronounced when progerin is targeted in mice with mild symptoms. Despite the broad expression pattern of progerin and its deleterious effects in many organs, restricting its suppression to vascular smooth muscle cells and cardiomyocytes is sufficient to prevent vascular disease and normalize lifespan.


Asunto(s)
Lamina Tipo A/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos del Músculo Liso/metabolismo , Progeria , Animales , Modelos Animales de Enfermedad , Humanos , Lamina Tipo A/genética , Ratones , Ratones Transgénicos , Progeria/genética , Progeria/metabolismo
6.
ACS Cent Sci ; 7(8): 1300-1310, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34471675

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS, progeria) is a rare genetic disease characterized by premature aging and death in childhood for which there were no approved drugs for its treatment until last November, when lonafarnib obtained long-sought FDA approval. However, the benefits of lonafarnib in patients are limited, highlighting the need for new therapeutic strategies. Here, we validate the enzyme isoprenylcysteine carboxylmethyltransferase (ICMT) as a new therapeutic target for progeria with the development of a new series of potent inhibitors of this enzyme that exhibit an excellent antiprogeroid profile. Among them, compound UCM-13207 significantly improved the main hallmarks of progeria. Specifically, treatment of fibroblasts from progeroid mice with UCM-13207 delocalized progerin from the nuclear membrane, diminished its total protein levels, resulting in decreased DNA damage, and increased cellular viability. Importantly, these effects were also observed in patient-derived cells. Using the Lmna G609G/G609G progeroid mouse model, UCM-13207 showed an excellent in vivo efficacy by increasing body weight, enhancing grip strength, extending lifespan by 20%, and decreasing tissue senescence in multiple organs. Furthermore, UCM-13207 treatment led to an improvement of key cardiovascular hallmarks such as reduced progerin levels in aortic and endocardial tissue and increased number of vascular smooth muscle cells (VSMCs). The beneficial effects go well beyond the effects induced by other therapeutic strategies previously reported in the field, thus supporting the use of UCM-13207 as a new treatment for progeria.

7.
Elife ; 92020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33063665

RESUMEN

Macrophages (Mφs) produce factors that participate in cardiac repair and remodeling after myocardial infarction (MI); however, how these factors crosstalk with other cell types mediating repair is not fully understood. Here we demonstrated that cardiac Mφs increased the expression of Mmp14 (MT1-MMP) 7 days post-MI. We selectively inactivated the Mmp14 gene in Mφs using a genetic strategy (Mmp14f/f:Lyz2-Cre). This conditional KO (MAC-Mmp14 KO) resulted in attenuated post-MI cardiac dysfunction, reduced fibrosis, and preserved cardiac capillary network. Mechanistically, we showed that MT1-MMP activates latent TGFß1 in Mφs, leading to paracrine SMAD2-mediated signaling in endothelial cells (ECs) and endothelial-to-mesenchymal transition (EndMT). Post-MI MAC-Mmp14 KO hearts contained fewer cells undergoing EndMT than their wild-type counterparts, and Mmp14-deficient Mφs showed a reduced ability to induce EndMT in co-cultures with ECs. Our results indicate the contribution of EndMT to cardiac fibrosis and adverse remodeling post-MI and identify Mφ MT1-MMP as a key regulator of this process.


Asunto(s)
Endotelio Vascular/metabolismo , Transición Epitelial-Mesenquimal , Macrófagos/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Infarto del Miocardio/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Colágeno/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibrosis , Citometría de Flujo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microcirculación , Fenotipo , Daño por Reperfusión , Disfunción Ventricular Izquierda
8.
Cells ; 9(10)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33049978

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is among the most devastating of the laminopathies, rare genetic diseases caused by mutations in genes encoding nuclear lamina proteins. HGPS patients age prematurely and die in adolescence, typically of atherosclerosis-associated complications. The mechanisms of HGPS-related atherosclerosis are not fully understood due to the scarcity of patient-derived samples and the availability of only one atheroprone mouse model of the disease. Here, we generated a new atherosusceptible model of HGPS by crossing progeroid LmnaG609G/G609G mice, which carry a disease-causing mutation in the Lmna gene, with Ldlr-/- mice, a commonly used preclinical atherosclerosis model. Ldlr-/-LmnaG609G/G609G mice aged prematurely and had reduced body weight and survival. Compared with control mice, Ldlr-/-LmnaG609G/G609G mouse aortas showed a higher atherosclerosis burden and structural abnormalities typical of HGPS patients, including vascular smooth muscle cell depletion in the media, adventitial thickening, and elastin structure alterations. Atheromas of Ldlr-/-LmnaG609G/G609G mice had features of unstable plaques, including the presence of erythrocytes and iron deposits and reduced smooth muscle cell and collagen content. Ldlr-/-LmnaG609G/G609G mice faithfully recapitulate vascular features found in patients and thus provide a new tool for studying the mechanisms of HGPS-related atherosclerosis and for testing therapies.


Asunto(s)
Modelos Animales de Enfermedad , Músculo Liso Vascular/metabolismo , Progeria/metabolismo , Envejecimiento Prematuro/metabolismo , Envejecimiento Prematuro/fisiopatología , Animales , Aorta/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/fisiopatología , Femenino , Lamina Tipo A/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Miocitos del Músculo Liso/metabolismo , Lámina Nuclear/metabolismo , Placa Aterosclerótica/metabolismo , Progeria/fisiopatología , Receptores de LDL/genética , Receptores de LDL/metabolismo
9.
EMBO Mol Med ; 12(2): e10862, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31793743

RESUMEN

Pathological angiogenesis contributes to cancer progression and chronic inflammatory diseases. In inflammatory bowel disease, the microvasculature expands by intussusceptive angiogenesis (IA), a poorly characterized mechanism involving increased blood flow and splitting of pre-existing capillaries. In this report, mice lacking the protease MT1-MMP in endothelial cells (MT1iΔEC ) presented limited IA in the capillary plexus of the colon mucosa assessed by 3D imaging during 1% DSS-induced colitis. This resulted in better tissue perfusion, preserved intestinal morphology, and milder disease activity index. Combined in vivo intravital microscopy and lentiviral rescue experiments with in vitro cell culture demonstrated that MT1-MMP activity in endothelial cells is required for vasodilation and IA, as well as for nitric oxide production via binding of the C-terminal fragment of MT1-MMP substrate thrombospondin-1 (TSP1) to CD47/αvß3 integrin. Moreover, TSP1 levels were significantly higher in serum from IBD patients and in vivo administration of an anti-MT1-MMP inhibitory antibody or a nonamer peptide spanning the αvß3 integrin binding site in TSP1 reduced IA during mouse colitis. Our results identify MT1-MMP as a new actor in inflammatory IA and a promising therapeutic target for inflammatory bowel disease.


Asunto(s)
Colitis , Metaloproteinasa 14 de la Matriz , Óxido Nítrico/metabolismo , Trombospondina 1 , Animales , Colitis/metabolismo , Colitis/patología , Células Endoteliales , Humanos , Intususcepción , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica , Trombospondina 1/metabolismo
10.
EMBO Mol Med ; 11(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30862662

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by progerin, a mutant lamin A variant. HGPS patients display accelerated aging and die prematurely, typically from atherosclerosis complications. Recently, we demonstrated that progerin-driven vascular smooth muscle cell (VSMC) loss accelerates atherosclerosis leading to premature death in apolipoprotein E-deficient mice. However, the molecular mechanism underlying this process remains unknown. Using a transcriptomic approach, we identify here endoplasmic reticulum stress (ER) and the unfolded protein responses as drivers of VSMC death in two mouse models of HGPS exhibiting ubiquitous and VSMC-specific progerin expression. This stress pathway was also activated in HGPS patient-derived cells. Targeting ER stress response with a chemical chaperone delayed medial VSMC loss and inhibited atherosclerosis in both progeria models, and extended lifespan in the VSMC-specific model. Our results identify a mechanism underlying cardiovascular disease in HGPS that could be targeted in patients. Moreover, these findings may help to understand other vascular diseases associated with VSMC death, and provide insight into aging-dependent vascular damage related to accumulation of unprocessed toxic forms of lamin A.


Asunto(s)
Estrés del Retículo Endoplásmico , Lamina Tipo A/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Apoptosis/efectos de los fármacos , Aterosclerosis/etiología , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Estimación de Kaplan-Meier , Longevidad/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Progeria/tratamiento farmacológico , Progeria/mortalidad , Progeria/patología , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Ácido Tauroquenodesoxicólico/farmacología , Ácido Tauroquenodesoxicólico/uso terapéutico , Respuesta de Proteína Desplegada/efectos de los fármacos
11.
Cell Discov ; 5: 16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30911407

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder for which no cure exists. The disease is characterized by premature aging and inevitable death in adolescence due to cardiovascular complications. Most HGPS patients carry a heterozygous de novo LMNA c.1824C > T mutation, which provokes the expression of a dominant-negative mutant protein called progerin. Therapies proven effective in HGPS-like mouse models have yielded only modest benefit in HGPS clinical trials. To overcome the gap between HGPS mouse models and patients, we have generated by CRISPR-Cas9 gene editing the first large animal model for HGPS, a knockin heterozygous LMNA c.1824C > T Yucatan minipig. Like HGPS patients, HGPS minipigs endogenously co-express progerin and normal lamin A/C, and exhibit severe growth retardation, lipodystrophy, skin and bone alterations, cardiovascular disease, and die around puberty. Remarkably, the HGPS minipigs recapitulate critical cardiovascular alterations seen in patients, such as left ventricular diastolic dysfunction, altered cardiac electrical activity, and loss of vascular smooth muscle cells. Our analysis also revealed reduced myocardial perfusion due to microvascular damage and myocardial interstitial fibrosis, previously undescribed readouts potentially useful for monitoring disease progression in patients. The HGPS minipigs provide an appropriate preclinical model in which to test human-size interventional devices and optimize candidate therapies before advancing to clinical trials, thus accelerating the development of effective applications for HGPS patients.

12.
J Clin Invest ; 128(9): 3887-3905, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29944140

RESUMEN

Dormant or slow-cycling tumor cells can form a residual chemoresistant reservoir responsible for relapse in patients, years after curative surgery and adjuvant therapy. We have adapted the pulse-chase expression of H2BeGFP for labeling and isolating slow-cycling cancer cells (SCCCs). SCCCs showed cancer initiation potential and enhanced chemoresistance. Cells at this slow-cycling status presented a distinctive nongenetic and cell-autonomous gene expression profile shared across different tumor types. We identified TET2 epigenetic enzyme as a key factor controlling SCCC numbers, survival, and tumor recurrence. 5-Hydroxymethylcytosine (5hmC), generated by TET2 enzymatic activity, labeled the SCCC genome in carcinomas and was a predictive biomarker of relapse and survival in cancer patients. We have shown the enhanced chemoresistance of SCCCs and revealed 5hmC as a biomarker for their clinical identification and TET2 as a potential drug target for SCCC elimination that could extend patients' survival.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Dioxigenasas , Resistencia a Antineoplásicos/genética , Epigénesis Genética , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Neoplasias/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Recurrencia , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Circulation ; 138(3): 266-282, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29490993

RESUMEN

BACKGROUND: Progerin, an aberrant protein that accumulates with age, causes the rare genetic disease Hutchinson-Gilford progeria syndrome (HGPS). Patients who have HGPS exhibit ubiquitous progerin expression, accelerated aging and atherosclerosis, and die in their early teens, mainly of myocardial infarction or stroke. The mechanisms underlying progerin-induced atherosclerosis remain unexplored, in part, because of the lack of appropriate animal models. METHODS: We generated an atherosclerosis-prone model of HGPS by crossing apolipoprotein E-deficient (Apoe-/-) mice with LmnaG609G/G609G mice ubiquitously expressing progerin. To induce progerin expression specifically in macrophages or vascular smooth muscle cells (VSMCs), we crossed Apoe-/-LmnaLCS/LCS mice with LysMCre and SM22αCre mice, respectively. Progerin expression was evaluated by polymerase chain reaction and immunofluorescence. Cardiovascular alterations were determined by immunofluorescence and histology in male mice fed normal chow or a high-fat diet. In vivo low-density lipoprotein retention was assessed by intravenous injection of fluorescently labeled human low-density lipoprotein. Cardiac electric defects were evaluated by electrocardiography. RESULTS: Apoe-/-LmnaG609G/G609G mice with ubiquitous progerin expression exhibited a premature aging phenotype that included failure to thrive and shortened survival. In addition, high-fat diet-fed Apoe-/-LmnaG609G/G609G mice developed a severe vascular pathology, including medial VSMC loss and lipid retention, adventitial fibrosis, and accelerated atherosclerosis, thus resembling most aspects of cardiovascular disease observed in patients with HGPS. The same vascular alterations were also observed in Apoe-/-LmnaLCS/LCSSM22αCre mice expressing progerin specifically in VSMCs, but not in Apoe-/-LmnaLCS/LCSLysMCre mice with macrophage-specific progerin expression. Moreover, Apoe-/-LmnaLCS/LCSSM22αCre mice had a shortened lifespan despite the lack of any overt aging phenotype. Aortas of ubiquitously and VSMC-specific progerin-expressing mice exhibited increased retention of fluorescently labeled human low-density lipoprotein, and atheromata in both models showed vulnerable plaque features. Immunohistopathological examination indicated that Apoe-/-LmnaLCS/LCSSM22αCre mice, unlike Apoe-/-LmnaG609G/G609G mice, die of atherosclerosis-related causes. CONCLUSIONS: We have generated the first mouse model of progerin-induced atherosclerosis acceleration, and demonstrate that restricting progerin expression to VSMCs is sufficient to accelerate atherosclerosis, trigger plaque vulnerability, and reduce lifespan. Our results identify progerin-induced VSMC death as a major factor triggering atherosclerosis and premature death in HGPS.


Asunto(s)
Aorta/patología , Arteriosclerosis/metabolismo , Lamina Tipo A/genética , Músculo Liso Vascular/metabolismo , Progeria/metabolismo , Animales , Arteriosclerosis/genética , Senescencia Celular , Modelos Animales de Enfermedad , Humanos , Lamina Tipo A/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Ratones Transgénicos , Músculo Liso Vascular/patología , Progeria/genética
14.
BMC Med ; 16(1): 28, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29471877

RESUMEN

BACKGROUND: Depression is viewed as a major and increasing public health issue, as it causes high distress in the people experiencing it and considerable financial costs to society. Efforts are being made to reduce this burden by preventing depression. A critical component of this strategy is the ability to assess the individual level and profile of risk for the development of major depression. This paper presents the cost-effectiveness of a personalized intervention based on the risk of developing depression carried out in primary care, compared with usual care. METHODS: Cost-effectiveness analyses are nested within a multicentre, clustered, randomized controlled trial of a personalized intervention to prevent depression. The study was carried out in 70 primary care centres from seven cities in Spain. Two general practitioners (GPs) were randomly sampled from those prepared to participate in each centre (i.e. 140 GPs), and 3326 participants consented and were eligible to participate. The intervention included the GP communicating to the patient his/her individual risk for depression and personal risk factors and the construction by both GPs and patients of a psychosocial programme tailored to prevent depression. In addition, GPs carried out measures to activate and empower the patients, who also received a leaflet about preventing depression. GPs were trained in a 10- to 15-h workshop. Costs were measured from a societal and National Health care perspective. Qualityadjustedlife years were assessed using the EuroQOL five dimensions questionnaire. The time horizon was 18 months. RESULTS: With a willingness-to-pay threshold of €10,000 (£8568) the probability of cost-effectiveness oscillated from 83% (societal perspective) to 89% (health perspective). If the threshold was increased to €30,000 (£25,704), the probability of being considered cost-effective was 94% (societal perspective) and 96%, respectively (health perspective). The sensitivity analysis confirmed these results. CONCLUSIONS: Compared with usual care, an intervention based on personal predictors of risk of depression implemented by GPs is a cost-effective strategy to prevent depression. This type of personalized intervention in primary care should be further developed and evaluated. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01151982. Registered on June 29, 2010.


Asunto(s)
Depresión/prevención & control , Atención Primaria de Salud/economía , Atención Primaria de Salud/métodos , Análisis por Conglomerados , Análisis Costo-Beneficio , Depresión/economía , Humanos , Años de Vida Ajustados por Calidad de Vida , Medición de Riesgo
15.
Environ Sci Pollut Res Int ; 24(6): 5746-5756, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28050761

RESUMEN

This work aims to investigate the nature and the specific mechanisms by which polycarboxylic compounds participate in the tolerance of Silene vulgaris to Cr with special attention given to the rhizosphere system. This knowledge is important to use this species in the implementation of phytoremediation technologies in Cr-polluted soils. According to the results, chromium is chelated and mobilized by the citric and malic acids in plant tissues, while oxalic acid might participate in the reduction and chelation of Cr in the rhizosphere. At the applied doses, the response of both exudation rate and root exudate composition (total polyphenols and quercitin) seems to involve a rearrangement in the lignification of the plant cell wall to immobilize Cr. Quercetin-3-dirhamnosyl-galactoside and apiin (apigenin-7-O-apiosyl-glucoside) have been identified as the major polyphenols in the root exudates of S. vulgaris. The increments found in the apiin concentration in root exudates seem to be related to the protection against Cr toxicity by chelation of Cr or by free radical scavenging. Though earlier response is detected in plant tissues, results from this work together with previous studies in S. vulgaris indicate that exudation might be a regulated mechanism of protection under Cr exposition in S. vulgaris that may involve mainly Cr reduction and chelation.


Asunto(s)
Biodegradación Ambiental , Cromo , Silene , Ácido Cítrico , Malatos , Ácido Oxálico , Raíces de Plantas
16.
Ann Intern Med ; 164(10): 656-65, 2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27019334

RESUMEN

BACKGROUND: Not enough is known about universal prevention of depression in adults. OBJECTIVE: To evaluate the effectiveness of an intervention to prevent major depression. DESIGN: Multicenter, cluster randomized trial with sites randomly assigned to usual care or an intervention. (ClinicalTrials.gov: NCT01151982). SETTING: 10 primary care centers in each of 7 cities in Spain. PARTICIPANTS: Two primary care physicians (PCPs) and 5236 nondepressed adult patients were randomly sampled from each center; 3326 patients consented and were eligible to participate. INTERVENTION: For each patient, PCPs communicated individual risk for depression and personal predictors of risk and developed a psychosocial program tailored to prevent depression. MEASUREMENTS: New cases of major depression, assessed every 6 months for 18 months. RESULTS: At 18 months, 7.39% of patients in the intervention group (95% CI, 5.85% to 8.95%) developed major depression compared with 9.40% in the control (usual care) group (CI, 7.89% to 10.92%) (absolute difference, -2.01 percentage points [CI, -4.18 to 0.16 percentage points]; P = 0.070). Depression incidence was lower in the intervention centers in 5 cities and similar between intervention and control centers in 2 cities. LIMITATION: Potential self-selection bias due to nonconsenting patients. CONCLUSION: Compared with usual care, an intervention based on personal predictors of risk for depression implemented by PCPs provided a modest but nonsignificant reduction in the incidence of major depression. Additional study of this approach may be warranted. PRIMARY FUNDING SOURCE: Institute of Health Carlos III.


Asunto(s)
Trastorno Depresivo Mayor/prevención & control , Atención Primaria de Salud/métodos , Trastorno Depresivo Mayor/epidemiología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Medición de Riesgo/métodos , España/epidemiología
17.
Int J Phytoremediation ; 18(6): 567-74, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26375321

RESUMEN

The objective of this work is to study the response of Silene vulgaris to a range of environmentally relevant concentrations of Cr(VI) in order to evaluate its potential use in the phytomanagement of Cr polluted sites. Cuttings of six homogenous genotypes from Madrid (Spain) have been used as plant material. The eco-physiological response of S. vulgaris to Cr(VI) changed with the genotype. The yield dose-response curve was characterized by stimulation at low doses of Cr(VI). The effects of metal concentration were quantified on root dry weight, water content and chlorophyll content, determined by SPAD index. The response was not homogeneous for all studied genotypes. At high doses of Cr(VI), plants increased micronutrient concentration in dry tissues which suggested that nutrient balance could be implicated in the alleviation of Cr toxicity. This work highlights the importance of studying the eco-physiological response of metallophytes under a range of pollutant concentrations to determine the most favorable traits to be employed in the phytomanagement process.


Asunto(s)
Caryophyllaceae/metabolismo , Cromo/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Caryophyllaceae/química , Caryophyllaceae/clasificación , Caryophyllaceae/genética , Clorofila/análisis , Clorofila/metabolismo , Cromo/análisis , Genotipo , Raíces de Plantas/química , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis
18.
J Cell Sci ; 127(Pt 17): 3768-81, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24994937

RESUMEN

Cell-cell adhesions are important sites through which cells experience and resist forces. In endothelial cells, these forces regulate junction dynamics and determine endothelial barrier strength. We identify the Ig superfamily member EMMPRIN (also known as basigin) as a coordinator of forces at endothelial junctions. EMMPRIN localization at junctions correlates with endothelial junction strength in different mouse vascular beds. Accordingly, EMMPRIN-deficient mice show altered junctions and increased junction permeability. Lack of EMMPRIN alters the localization and function of VE-cadherin (also known as cadherin-5) by decreasing both actomyosin contractility and tugging forces at endothelial cell junctions. EMMPRIN ensures proper actomyosin-driven maturation of competent endothelial junctions by forming a molecular complex with γ-catenin (also known as junction plakoglobin) and Nm23 (also known as NME1), a nucleoside diphosphate kinase, thereby locally providing ATP to fuel the actomyosin machinery. These results provide a novel mechanism for the regulation of actomyosin contractility at endothelial junctions and might have broader implications in biological contexts such as angiogenesis, collective migration and tissue morphogenesis by coupling compartmentalized energy production to junction assembly.


Asunto(s)
Actomiosina/metabolismo , Adenosina Trifosfato/biosíntesis , Basigina/metabolismo , Células Endoteliales/citología , Nucleósido Difosfato Quinasas NM23/metabolismo , gamma Catenina/metabolismo , Animales , Adhesión Celular/fisiología , Membrana Celular/metabolismo , Células Cultivadas , Proteínas del Citoesqueleto/biosíntesis , Endotelio Vascular/metabolismo , Uniones Intercelulares/metabolismo , Ratones
19.
BMC Psychiatry ; 13: 171, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23782553

RESUMEN

BACKGROUND: The 'predictD algorithm' provides an estimate of the level and profile of risk of the onset of major depression in primary care attendees. This gives us the opportunity to develop interventions to prevent depression in a personalized way. We aim to evaluate the effectiveness, cost-effectiveness and cost-utility of a new intervention, personalized and implemented by family physicians (FPs), to prevent the onset of episodes of major depression. METHODS/DESIGN: This is a multicenter randomized controlled trial (RCT), with cluster assignment by health center and two parallel arms. Two interventions will be applied by FPs, usual care versus the new intervention predictD-CCRT. The latter has four components: a training workshop for FPs; communicating the level and profile of risk of depression; building up a tailored bio-psycho-family-social intervention by FPs to prevent depression; offering a booklet to prevent depression; and activating and empowering patients. We will recruit a systematic random sample of 3286 non-depressed adult patients (1643 in each trial arm), nested in 140 FPs and 70 health centers from 7 Spanish cities. All patients will be evaluated at baseline, 6, 12 and 18 months. The level and profile of risk of depression will be communicated to patients by the FPs in the intervention practices at baseline, 6 and 12 months. Our primary outcome will be the cumulative incidence of major depression (measured by CIDI each 6 months) over 18 months of follow-up. Secondary outcomes will be health-related quality of life (SF-12 and EuroQol), and measurements of cost-effectiveness and cost-utility. The inferences will be made at patient level. We shall undertake an intention-to-treat effectiveness analysis and will handle missing data using multiple imputations. We will perform multi-level logistic regressions and will adjust for the probability of the onset of major depression at 12 months measured at baseline as well as for unbalanced variables if appropriate. The economic evaluation will be approached from two perspectives, societal and health system. DISCUSSION: To our knowledge, this will be the first RCT of universal primary prevention for depression in adults and the first to test a personalized intervention implemented by FPs. We discuss possible biases as well as other limitations. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01151982.


Asunto(s)
Trastorno Depresivo Mayor/prevención & control , Atención Primaria de Salud/métodos , Calidad de Vida , Adulto , Protocolos Clínicos , Análisis Costo-Beneficio , Trastorno Depresivo Mayor/economía , Humanos , Atención Primaria de Salud/economía , Proyectos de Investigación , Riesgo , España
20.
Eur J Cell Biol ; 91(11-12): 889-95, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22939226

RESUMEN

The response to environmental cues such as inflammatory stimuli requires coordinated cellular functions. Certain proteins have functions on both sides of the plasma membrane to allow coordination between the extracellular and intracellular milieus. The membrane-anchored matrix metalloproteinase MT1-MMP is well positioned to sense and modify the extracellular environment by processing matrix components, transmembrane proteins and soluble factors. Recent findings show, however, that MT1-MMP also plays unexpected intracellular roles in macrophages through its location at the plasma membrane, the Golgi or the nucleus, impacting cell motility, metabolism and gene transcription. MT1-MMP is thus an example of the evolutionary diversification of protein function, allowing optimal coordination between extracellular stimuli and cellular responses. It remains to be determined whether these new MT1-MMP functions are specific to macrophages, professional phagocytes involved in inflammation, or are present in other inflammation-responsive cells. In this review, we will summarize these site-specific MT1-MMP functions in macrophages and comment on the possible conservation of these functions in endothelial cells.


Asunto(s)
Membrana Celular/enzimología , Membranas Intracelulares/enzimología , Metaloproteinasas de la Matriz Asociadas a la Membrana/metabolismo , Animales , Núcleo Celular/enzimología , Células Endoteliales/enzimología , Humanos , Macrófagos/enzimología , Metaloproteinasas de la Matriz Asociadas a la Membrana/genética , Transcripción Genética , Red trans-Golgi/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...