RESUMEN
Many plants exchanged in the global redistribution of species in the last 200 years, particularly between South Africa and Australia, have become threatening invasive species in their introduced range. Refining our understanding of the genetic diversity and population structure of native and alien populations, introduction pathways, propagule pressure, naturalization, and initial spread, can transform the effectiveness of management and prevention of further introductions. We used 20,221 single nucleotide polymorphisms to reconstruct the invasion of a coastal shrub, Chrysanthemoides monilifera ssp. rotundata (bitou bush) from South Africa, into eastern Australia (EAU), and Western Australia (WAU). We determined genetic diversity and population structure across the native and introduced ranges and compared hypothesized invasion scenarios using Bayesian modeling. We detected considerable genetic structure in the native range, as well as differentiation between populations in the native and introduced range. Phylogenetic analysis showed the introduced samples to be most closely related to the southern-most native populations, although Bayesian analysis inferred introduction from a ghost population. We detected strong genetic bottlenecks during the founding of both the EAU and WAU populations. It is likely that the WAU population was introduced from EAU, possibly involving an unsampled ghost population. The number of private alleles and polymorphic SNPs successively decreased from South Africa to EAU to WAU, although heterozygosity remained high. That bitou bush remains an invasion threat in EAU, despite reduced genetic diversity, provides a cautionary biosecurity message regarding the risk of introduction of potentially invasive species via shipping routes.
RESUMEN
Impacts of invasive species are often difficult to quantify, meaning that many invaders are prioritised for management without robust, contextual evidence of impact. Most impact studies for invasive plants compare heavily invaded with non-invaded sites, revealing little about abundance-impact relationships. We examined effects of increasing cover and volume of the non-native herbaceous groundcover Tradescantia fluminensis on a temperate rainforest community of southern Australia. We hypothesised that there would be critical thresholds in T. fluminensis abundance, below which the native plant community would not be significantly impacted, but above which the community's condition would degrade markedly. We modelled the abundance-impact relationship from 83 plots that varied in T. fluminensis abundance and landscape context and found the responses of almost all native plant indicators to invasion were non-linear. Native species richness, abundance and diversity exhibited negative exponential relationships with increasing T. fluminensis volume, but negative threshold relationships with increasing T. fluminensis cover. In the latter case, all metrics were relatively stable until cover reached between 20 and 30%, after which each decreased linearly, with a 50% decline occurring at 75-80% invader cover. Few growth forms (notably shrubs and climbers) exhibited such thresholds, with most exhibiting negative exponential relationships. Tradescantia fluminensis biomass increased dramatically at > 80% cover, with few native species able to persist at such high levels of invasion. Landscape context had almost no influence on native communities, or the abundance-impact relationships between T. fluminensis and the plant community metrics. Our results suggest that the diversity of native rainforest community can be maintained where T. fluminensis is present at moderate-to-low cover levels.
Asunto(s)
Especies Introducidas , Bosque Lluvioso , Tradescantia , VictoriaRESUMEN
When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area.
Asunto(s)
Flujo Génico , Variación Genética , Plantago/genética , Demografía , Especies Introducidas , Filogenia , Plantago/químicaRESUMEN
Effective control of an invasive species is frequently used to infer positive outcomes for the broader ecosystem. In many situations, whether the removal of an invasive plant is of net benefit to biodiversity is poorly assessed. We undertook a 10-year study on the effects of invasive shrub management (bitou bush, Chrysanthemoides monilifera ssp. rotundata) on native flora and fauna in a eucalypt forest in south-eastern Australia. Bitou bush eradication is a management priority, yet the optimal control regime (combination of herbicide spray and fire) is difficult to implement, meaning managed sites have complex management histories that vary in effectiveness of control. Here we test the long-term response of common biodiversity indicators (species richness, abundance and diversity of native plants, birds, herpetofauna and small mammals) to both the management, and the post-management status of bitou bush (% cover). While average bitou bush cover decreased with management, bitou bush consistently occurred at around half of our managed sites despite control efforts. The relationship between biodiversity and bitou bush cover following management differed from positive, neutral or negative among species groups and indicators. Native plant cover was lower under higher levels of bitou bush cover, but the abundance of birds and small mammals were positively related to bitou bush cover. Evidence suggests that the successful control of an invader may not necessarily result in beneficial outcomes for all components of biodiversity.
Asunto(s)
Asteraceae/genética , Biodiversidad , Ecosistema , Especies Introducidas , Animales , Asteraceae/crecimiento & desarrollo , Aves/fisiología , Conservación de los Recursos Naturales , Eucalyptus/genética , Eucalyptus/crecimiento & desarrollo , Incendios , Herbicidas/efectos adversos , Humanos , Australia del SurRESUMEN
STUDY DESIGN: An investigation of mechanical destabilization of the lumbar ovine intervertebral disc (IVD) inducing IVD degeneration (IVDD) as determined by multiparameter outcome measures (magnetic resonance imaging [MRI], IVD composition, biomechanical testing, gene profiling, immunohistochemistry, and immunoblotting). OBJECTIVE: To assess the effect of IVD mechanical destabilization on matrix protein and metalloproteinase gene expression to investigate the pathophysiological mechanisms of lumbar IVDD. SUMMARY OF BACKGROUND DATA: Several earlier studies have used annular transection to induce IVDD in sheep, but none have optimized or validated the most appropriate lesion size. METHODS: The annulus fibrosus (AF) incision inducing maximal change in IVD biomechanics was applied to L1-L2, L3-L4, and L5-L6 discs in vivo to compare with a sham procedure at 3 months post operation. IVDs were evaluated by MRI, biomechanics, histopathology, proteoglycan and collagen content, gene expression, and aggrecan proteolysis by Western blotting. RESULTS: Significant changes were observed in lesion (6 × 20 mm(2)) compared with sham IVDs at 3 months post operation: reduced disc height on MRI; increased neutral zone in biomechanical testing; depleted proteoglycan and collagen content in the nucleus pulposus (NP) and lesion half of the AF but not in the contralateral AF; increased messenger RNA for collagen I and II, aggrecan, versican, perlecan, matrix metalloproteinase (MMP)-1 & 13, and ADAMTS-5, in the lesion-site AF and NP but not in the contralateral AF. ADAMTS-4 messenger RNA was increased in the lesion-site AF but decreased in the NP. Despite an upregulation in MMPs, there was no change in MMP- or ADAMTS-generated aggrecan neoepitopes in any region of the IVD in lesion or sham discs. CONCLUSION: Lumbar IVDD was reproducibly induced with a 6 × 20 mm(2) annular lesion, with focal dysregulation of MMP gene expression, cell cloning in the inner AF, loss of NP aggrecan, and disc height. Loss of aggrecan from the NP was not attributable to increased proteolysis in the interglobular domain by MMPs or ADAMTS.