Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Biochem Funct ; 42(2): e3945, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38362935

RESUMEN

MicroRNAs (miRNA) are small and conserved noncoding RNA molecules that regulate gene expression at the posttranscriptional level. These groups of RNAs are crucial in various cellular processes, especially in mediating disease pathogenesis, particularly cancer. The dysregulation of miRNAs was reported in many cancer types, including nasopharyngeal cancer (NPC), which is a malignant tumor of the nasopharynx. In this review, miRNAs involvement in crucial signaling pathways associated with NPC such as PTEN/PI3K/AKT, TGFß/SMAD, RAS/MAPK, Wnt/ß-catenin and pRB-E2F was investigated. miRNAs could function as tumor suppressor-miR or onco-miR in NPC profoundly influenced cell cycle, apoptosis, proliferation, migration, and metastasis. This comprehensive review of current literature provided a thorough profile of miRNAs and their interplay with the aforementioned signaling pathways in NPC. Understanding these molecular interactions could remarkably impact the diagnosis, prognosis, and therapeutic strategies for NPC.


Asunto(s)
Carcinoma , MicroARNs , Neoplasias Nasofaríngeas , Humanos , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , MicroARNs/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , beta Catenina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Transducción de Señal , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Movimiento Celular/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
2.
Heliyon ; 9(10): e20413, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37780749

RESUMEN

Palm oil is a vegetable oil that is widely used for cooking and deep-frying because of its affordability. However, repeatedly heated palm oil is also prone to oxidation due to its significant content of unsaturated fatty acids and other chemical toxicants such as glycidyl esters and 3-monochloropropane-1,2-diol (3-MCPD). Initially, the physicochemical properties such as colour, viscosity, peroxide, p-anisidine and total oxidation (TOTOX) of periodically heated palm oil were investigated. Chemical profiling and fingerprinting of six different brands of palm cooking oil during heating cycles between 90 and 360 min were conducted using Fourier transform infrared (FTIR) and 1H Nuclear Magnetic Resonance (NMR) metabolomics. In addition, the multivariate analysis was employed to evaluate the 1H NMR spectroscopic pattern of repeatedly heated palm oil with the corresponding physicochemical properties. The FTIR metabolomics showed significant different of the chemical fingerprinting subjected to heating duration, which in agreement with the result of 1H NMR metabolomics. Partial least squares (PLS) model revealed that most of the physicochemical properties of periodically heated palm oil are positively correlated (R2 values of 0.98-0.99) to their spectroscopic pattern. Based on the findings, the color of the oils darkened with increased heating time. The peroxide value (PV), p-anisidine value (p-AnV), and total oxidation (TOTOX) values increased significantly due to degradation of unsaturated compounds and oxidation products formed. We identified targeted metabolites (probable carcinogens) such as 3-monochloropropane-1,2-diol (3-MCPD) and glycidyl ester (GE), indicating the conversion of 3-MCPD to GE in repeatedly heated oils based on PCA and OPLSDA models. Our correlation analysis of NMR and physicochemical properties has shown that the conversion of 3-MCPD to GE was significantly increased from 180 to 360 min cooking time. The combination spectroscopic techniques with physicochemical properties are a reliable and robust methods to evaluate the characteristics, stability and chemical's structure changes of periodically heated palm oil, which may contribute to probable carcinogens development. This study has proven that combination of NMR and physicochemical analysis may predict the formation of the probable carcinogens of heated cooking oil over time which emphasizing the need to avoid certain heating cycles to mitigate formation of probable carcinogens during cooking process.

4.
Food Chem Toxicol ; 179: 113940, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37487858

RESUMEN

In recent years, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) has conducted a program to re-evaluate the safety of natural flavor complexes (NFCs) used as flavor ingredients. This publication, twelfth in the series, details the re-evaluation of NFCs whose constituent profiles are characterized by alicyclic or linear ketones. In its re-evaluation, the Expert Panel applies a scientific constituent-based procedure for the safety evaluation of NFCs in commerce using a congeneric group approach. Estimated intakes of each congeneric group of the NFC are evaluated using the well-established and conservative Threshold of Toxicological Concern (TTC) approach. In addition, studies on the toxicity and genotoxicity of members of the congeneric groups and the NFCs under evaluation are reviewed. The scope of the safety evaluation of the NFCs contained herein does not include added use in dietary supplements or any products other than food. Thirteen (13) NFCs derived from the Boronia, Cinnamomum, Thuja, Ruta, Salvia, Tagetes, Hyssopus, Iris, Perilla and Artemisia genera are affirmed as generally recognized as safe (GRAS) under conditions of their intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.


Asunto(s)
Productos Biológicos , Tagetes , Aromatizantes , Industria de Alimentos , Suplementos Dietéticos , Extractos Vegetales
5.
Food Chem Toxicol ; 175: 113697, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36870670

RESUMEN

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, eleventh in the series, evaluates the safety of NFCs characterized by primary alcohol, aldehyde, carboxylic acid, ester and lactone constituents derived from terpenoid biosynthetic pathways and/or lipid metabolism. The scientific-based evaluation procedure published in 2005 and updated in 2018 that relies on a complete constituent characterization of the NFC and organization of the constituents into congeneric groups. The safety of the NFCs is evaluated using the threshold of toxicological concern (TTC) concept in addition to data on estimated intake, metabolism and toxicology of members of the congeneric groups and for the NFC under evaluation. The scope of the safety evaluation does not include added use in dietary supplements or any products other than food. Twenty-three NFCs, derived from the Hibiscus, Melissa, Ricinus, Anthemis, Matricaria, Cymbopogon, Saussurea, Spartium, Pelargonium, Levisticum, Rosa, Santalum, Viola, Cryptocarya and Litsea genera were affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.


Asunto(s)
Aromatizantes , Aceites Volátiles , Aromatizantes/toxicidad , Manzanilla , Industria de Alimentos , Terpenos , Etanol
6.
Food Chem Toxicol ; 175: 113646, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36804339

RESUMEN

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients in food. In this publication, tenth in the series, NFCs containing a high percentage of at least one naturally occurring allylalkoxybenzene constituent with a suspected concern for genotoxicity and/or carcinogenicity are evaluated. In a related paper, ninth in the series, NFCs containing anethole and/or eugenol and relatively low percentages of these allylalkoxybenzenes are evaluated. The Panel applies the threshold of toxicological concern (TTC) concept and evaluates relevant toxicology data on the NFCs and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s), the estimated intake of the constituent is compared to the TTC for compounds with structural alerts for genotoxicity and when exceeded, a margin of exposure (MOE) is calculated. BMDL10 values are derived from benchmark dose analyses using Bayesian model averaging for safrole, estragole and methyl eugenol using EPA's BMDS software version 3.2. BMDL10 values for myristicin, elemicin and parsley apiole were estimated by read-across using relative potency factors. Margins of safety for each constituent congeneric group and MOEs for each allylalkoxybenzene constituent for each NFC were determined that indicate no safety concern. The scope of the safety evaluation contained herein does not include added use in dietary supplements or any products other than food. Ten NFCs, derived from basil, estragon (tarragon), mace, nutmeg, parsley and Canadian snakeroot were determined or affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.


Asunto(s)
Myristica , Ocimum basilicum , Petroselinum , Teorema de Bayes , Aromatizantes/toxicidad , Aromatizantes/química , Canadá
7.
Cancers (Basel) ; 15(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36765584

RESUMEN

Colorectal cancer is driven by genetic and epigenetic changes in cells to confer phenotypes that promote metastatic transformation and development. Tumour necrosis factor-alpha (TNF-α), a pro-inflammatory mediator, regulates cellular communication within the tumour microenvironment and is associated with the progression of the metastatic phenotype. Oncogenic miR-21 has been shown to be overexpressed in most solid tumours, including colorectal cancer, and is known to target proteins involved in metastatic transformation. In this study, we investigated the relationship between TNF-α and miR-21 regulation in colorectal cancer epithelial cells (SW480 and HCT116). We observed that TNF-α, at concentrations reported to be present in serum and tumour tissue from colorectal cancer patients, upregulated miR-21 expression in both cell lines. TNF-α treatment also promoted cell migration, downregulation of the expression of E-cadherin, a marker of epithelial to mesenchymal transition, and anti-apoptotic BCL-2 (a validated target for miR-21). Knockdown of miR-21 had the opposite effect on each of these TNF-a induced phenotypic changes. Additionally, in the SW480 cell line, although TNF-α treatment selectively induced expression of a marker of metastatic progression VEGF-A, it failed to affect MMP2 expression or invasion activity. Our data indicate that exposing colorectal cancer epithelial cells to TNF-α, at concentrations occurring in the serum and tumour microenvironment of colorectal cancer patients, upregulated miR-21 expression and promoted the metastatic phenotype.

8.
Food Chem Toxicol ; 174: 113643, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36739890

RESUMEN

The FEMA Expert Panel program to re-evaluate the safety of natural flavor complexes (NFCs) used as flavoring ingredients in food has resulted in the publication of an updated constituent-based procedure as well as publications on the safety evaluation of many botanical-derived NFCs. This publication, ninth in the series and related to the ninth publication, describes the affirmation of the generally recognized as safe (GRAS) status for NFCs with propenylhydroxybenzene and allylalkoxybenzene constituents under their conditions of intended use as flavoring ingredients added to food. The Panel's procedure applies the threshold of toxicological concern (TTC) concept and evaluates relevant data on absorption, metabolism, genotoxic potential and toxicology for the NFCs themselves and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s) with suspected genotoxic potential, the estimated intake of the individual constituent is compared to the TTC for compounds with structural alerts for genotoxicity and if exceeded, a margin of exposure is calculated using BMDL10 values derived from benchmark dose analyses using Bayesian model averaging, as presented in the tenth article of the series. Safety evaluations for NFCs derived from allspice, anise seed, star anise, sweet fennel seed and pimento leaves were conducted and their GRAS status was affirmed for use as flavoring ingredients. The scope of the safety evaluation contained herein does not include added use in dietary supplements or any products other than food.


Asunto(s)
Foeniculum , Pimenta , Pimpinella , Pruebas de Toxicidad , Teorema de Bayes , Aromatizantes/toxicidad , Suplementos Dietéticos
9.
Food Chem Toxicol ; 173: 113580, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36610475

RESUMEN

The Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) applies its procedure for the safety evaluation of natural flavor complexes (NFCs) to re-evaluate the safety of Asafetida Oil (Ferula assa-foetida L.) FEMA 2108, Garlic Oil (Allium sativum L.) FEMA 2503 and Onion Oil (Allium cepa L.) FEMA 2817 for use as flavoring in food. This safety evaluation is part of a series of evaluations of NFCs for use as flavoring ingredients conducted by the Expert Panel that applies a scientific procedure published in 2005 and updated in 2018. Using a group approach that relies on a complete chemical characterization of the NFC intended for commerce, the constituents of each NFC are organized into well-defined congeneric groups and the estimated intake of each constituent congeneric group is evaluated using the conservative threshold of toxicological concern (TTC) concept. Data on the metabolism, genotoxic potential and toxicology for each constituent congeneric group are reviewed as well as studies on each NFC. Based on the safety evaluation, Asafetida Oil (Ferula assa-foetida L.), Garlic Oil (Allium sativum L.) and Onion Oil (Allium cepa L.) were affirmed as generally recognized as safe (GRASa) under their conditions of intended use as flavor ingredients.


Asunto(s)
Productos Biológicos , Ferula , Ajo , Aromatizantes/toxicidad , Aromatizantes/química , Aceites de Plantas/toxicidad
10.
Food Chem Toxicol ; 155: 112357, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34217737

RESUMEN

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, the sixth in the series, will summarize the re-evaluation of eight NFCs whose constituent profiles are characterized by significant amounts of eucalyptol and/or other cyclic ethers. This re-evaluation was based on a procedure first published in 2005 and subsequently updated in 2018 that evaluates the safety of naturally occurring mixtures for their intended use as flavoring ingredients. The procedure relies on a complete chemical characterization of the NFC intended for commerce and the organization of its chemical constituents into well-defined congeneric groups. The safety of the NFC is evaluated using the well-established and conservative threshold of toxicological concern (TTC) concept in addition to data on absorption, metabolism and toxicology of the constituents of the congeneric groups and the NFC under evaluation. Eight NFCs derived from the Eucalyptus, Melaleuca, Origanum, Laurus, Rosmarinus and Salvia genera were affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.


Asunto(s)
Éteres Cíclicos/toxicidad , Aromatizantes/toxicidad , Aceites de Plantas/toxicidad , Animales , Células CHO , Línea Celular Tumoral , Seguridad de Productos para el Consumidor , Cricetulus , Éteres Cíclicos/química , Eucaliptol/toxicidad , Femenino , Aromatizantes/química , Humanos , Masculino , Ratones , Pruebas de Mutagenicidad , Nivel sin Efectos Adversos Observados , Aceites de Plantas/química , Plantas/química , Embarazo , Ratas Wistar , Medición de Riesgo , Salmonella typhimurium/efectos de los fármacos
11.
Food Chem Toxicol ; 155: 112378, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34217738

RESUMEN

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients, mostly consisting of a variety of essential oils and botanical extracts. This publication, seventh in the series, re-evaluates NFCs with constituent profiles dominated by phenolic derivatives including carvacrol, thymol and related compounds using a constituent-based procedure first published in 2005 and updated in 2018. The procedure is based on the chemical characterization of each NFC as intended for commerce and the estimated intake of the constituent congeneric groups. The procedure applies the threshold of toxicological concern (TTC) concept and evaluates relevant data on absorption, metabolism, genotoxic potential and toxicology of the constituent congeneric groups and the NFC under evaluation. Herein, the FEMA Expert Panel affirmed the generally recognized as safe (GRAS) status of seven phenolic derivative-based NFCs, Origanum Oil (Extractive) (FEMA 2828), Savory Summer Oil (FEMA 3013), Savory Summer Oleoresin (FEMA 3014), Savory Winter Oil (FEMA 3016), Savory Winter Oleoresin (FEMA 3017), Thyme Oil (FEMA 3064) and Thyme White Oil (FEMA 3065) under their conditions of intended use as flavor ingredients.


Asunto(s)
Aromatizantes/toxicidad , Aceites Volátiles/toxicidad , Fenoles/toxicidad , Aceites de Plantas/toxicidad , Animales , Seguridad de Productos para el Consumidor , Escherichia coli/efectos de los fármacos , Femenino , Aromatizantes/química , Masculino , Ratones Endogámicos ICR , Pruebas de Mutagenicidad , Nivel sin Efectos Adversos Observados , Aceites Volátiles/química , Origanum/química , Fenoles/química , Aceites de Plantas/química , Ratas Sprague-Dawley , Ratas Wistar , Medición de Riesgo , Salmonella typhimurium/efectos de los fármacos , Thymus (Planta)/química
12.
Microbiome ; 9(1): 139, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127058

RESUMEN

BACKGROUND: Bariatric surgery, used to achieve effective weight loss in individuals with severe obesity, modifies the gut microbiota and systemic metabolism in both humans and animal models. The aim of the current study was to understand better the metabolic functions of the altered gut microbiome by conducting deep phenotyping of bariatric surgery patients and bacterial culturing to investigate causality of the metabolic observations. METHODS: Three bariatric cohorts (n = 84, n = 14 and n = 9) with patients who had undergone Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG) or laparoscopic gastric banding (LGB), respectively, were enrolled. Metabolic and 16S rRNA bacterial profiles were compared between pre- and post-surgery. Faeces from RYGB patients and bacterial isolates were cultured to experimentally associate the observed metabolic changes in biofluids with the altered gut microbiome. RESULTS: Compared to SG and LGB, RYGB induced the greatest weight loss and most profound metabolic and bacterial changes. RYGB patients showed increased aromatic amino acids-based host-bacterial co-metabolism, resulting in increased urinary excretion of 4-hydroxyphenylacetate, phenylacetylglutamine, 4-cresyl sulphate and indoxyl sulphate, and increased faecal excretion of tyramine and phenylacetate. Bacterial degradation of choline was increased as evidenced by altered urinary trimethylamine-N-oxide and dimethylamine excretion and faecal concentrations of dimethylamine. RYGB patients' bacteria had a greater capacity to produce tyramine from tyrosine, phenylalanine to phenylacetate and tryptophan to indole and tryptamine, compared to the microbiota from non-surgery, normal weight individuals. 3-Hydroxydicarboxylic acid metabolism and urinary excretion of primary bile acids, serum BCAAs and dimethyl sulfone were also perturbed following bariatric surgery. CONCLUSION: Altered bacterial composition and metabolism contribute to metabolic observations in biofluids of patients following RYGB surgery. The impact of these changes on the functional clinical outcomes requires further investigation. Video abstract.


Asunto(s)
Derivación Gástrica , Obesidad Mórbida , Animales , Bacterias/genética , Humanos , Obesidad Mórbida/cirugía , Fenotipo , ARN Ribosómico 16S/genética
13.
Toxicology ; 457: 152806, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33961948

RESUMEN

Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer death. Benzo[a]pyrene (BaP) and 2-amino-1-methyl-6-phenylimidazol [4,5-b] pyridine (PhIP) present in cooked meat are pro-carcinogens and considered to be potential risk factors for CRC. Their carcinogenic and mutagenic effects require metabolic activation primarily by cytochrome P450 1 family enzymes (CYPs); the expression of these enzymes can be modulated by aryl hydrocarbon receptor (AhR) activation and the tumour microenvironment, involving mediators of inflammation. In this study, we hypothesized that tumour necrosis factor-α (TNF-α), a key mediator of inflammation, modulates BaP- and PhIP-induced DNA damage in colon cancer epithelial cells. Importantly, we observed that TNF-α alone (0.1-100 pg/ml) induced DNA damage (micronuclei formation) in HCT-116 cells and co-treatment of TNF-α with BaP or PhIP showed higher levels of DNA damage compared to the individual single treatments. TNF-α alone or in combination with BaP or PhIP did not affect the expression levels of CYP1A1 and CYP1B1 (target genes of AhR signaling pathways). The DNA damage induced by TNF-α was elevated in p53 null HTC-116 cells compared to wild type cells, suggesting that TNF-α-induced DNA damage is suppressed by functional p53. In contrast, p53 status failed to affect BaP and PhIP induced micronucleus frequency. Furthermore, JNK and NF-κB signaling pathway were activated by TNF-α treatment but only inhibition of JNK significantly reduced TNF-α-induced DNA damage. Collectively, these findings suggest that TNF-α induced DNA damage involves JNK signaling pathway rather than AhR and NF-κB pathways in colon cancer epithelial cells.


Asunto(s)
Carcinógenos/toxicidad , Neoplasias Colorrectales/metabolismo , Daño del ADN/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factor de Necrosis Tumoral alfa/toxicidad , Carcinógenos/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Neoplasias Colorrectales/patología , Daño del ADN/fisiología , Relación Dosis-Respuesta a Droga , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células HCT116 , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Factor de Necrosis Tumoral alfa/administración & dosificación
14.
Front Endocrinol (Lausanne) ; 11: 571357, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101204

RESUMEN

Background: Small noncoding microRNA (miRNA) have regulatory functions in polycystic ovary syndrome (PCOS) that differ to those in women without PCOS. However, little is known about miRNA expression in women with PCOS who are not insulin resistant (IR). Methods: Circulating miRNAs were measured using quantitative polymerase chain reaction (qPCR) in 24 non-obese BMI and age matched women with PCOS and 24 control women. A miRNA data set was used to determine miRNA levels. Results: Women with PCOS showed a higher free androgen index (FAI) and anti-mullerian hormone (AMH) but IR did not differ. Four miRNAs (miR-1260a, miR-18b-5p, miR-424-5p, and miR let-7b-3p) differed between control and PCOS women that passed the false discovery rate (FDR) out of a total of 177 circulating miRNAs that were detected. MiRNA let-7b-3p correlated with AMH in PCOS (p < 0.05). When the groups were combined, miR-1260a correlated with FAI and let-7b-3p correlated with body mass index (BMI) (p < 0.05). There was no correlation to androgen levels. Ingenuity pathway analysis showed that nine of the top 10 miRNAs reported were associated with inflammatory pathways. Conclusion: When IR did not differ between PCOS and control women, only four miRNA differed significantly suggesting that IR may be a driver for many of the miRNA changes reported. Let-7b-3p was related to AMH in PCOS, and to BMI as a group, whilst miR-1260a correlated with FAI. Androgen levels, however, had no effect upon circulating miRNA profiles. The expressed miRNAs were associated with the inflammatory pathway involving TNF and IL6.


Asunto(s)
MicroARN Circulante/sangre , MicroARN Circulante/genética , Resistencia a la Insulina , Síndrome del Ovario Poliquístico/sangre , Síndrome del Ovario Poliquístico/genética , Adulto , Hormona Antimülleriana/sangre , Biomarcadores/sangre , Estudios de Cohortes , Femenino , Redes Reguladoras de Genes/fisiología , Humanos , Proyectos Piloto , Síndrome del Ovario Poliquístico/diagnóstico , Estudios Prospectivos , Adulto Joven
16.
Food Chem Toxicol ; 145: 111584, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32682832

RESUMEN

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, fifth in the series, evaluates the safety of NFCs containing linalool and/or other characteristic mono- and sesquiterpenoid tertiary alcohols and esters using the safety evaluation procedure published by the FEMA Expert Panel in 2005 and updated in 2018. The procedure relies on a complete chemical characterization of the NFC intended for commerce and organization of the chemical constituents of each NFC into well-defined congeneric groups. The safety of each NFC is evaluated using the well-established and conservative threshold of toxicological concern (TTC) concept in addition to data on absorption, metabolism and toxicology of both the constituent congeneric groups and the NFCs. Sixteen NFCs, derived from the Lavandula, Aniba, Elettaria, Daucus, Salvia, Coriandrum, Ribes, Guaiacum/Bulnesia, Citrus, Pogostemon, Melaleuca and Michelia genera, were affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.


Asunto(s)
Aromatizantes/toxicidad , Monoterpenos/toxicidad , Plantas/química , Sesquiterpenos/toxicidad , Animales , Seguridad de Productos para el Consumidor , Escherichia coli/efectos de los fármacos , Femenino , Aromatizantes/química , Humanos , Masculino , Ratones , Monoterpenos/química , Pruebas de Mutagenicidad , Nivel sin Efectos Adversos Observados , Aceites de Plantas/química , Aceites de Plantas/toxicidad , Ratas , Salmonella typhimurium/efectos de los fármacos , Sesquiterpenos/química
17.
Food Chem Toxicol ; 145: 111585, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32702506

RESUMEN

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association initiated the safety re-evaluation of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, 4th in a series focusing on the safety evaluation of NFCs, presents an evaluation of NFCs rich in hydroxyallylbenzene and hydroxypropenylbenzene constituents using a procedure initially published in 2005 and updated in 2018 that evaluates the safety of naturally occurring mixtures for their intended use as flavoring ingredients. The procedure requires the characterization of the chemical composition for each NFC and subsequent organization of the constituents into defined congeneric groups. The safety of each NFC is evaluated using the conservative threshold of toxicological concern (TTC) approach together with studies on absorption, metabolism and toxicology of the NFC and its constituent congeneric groups. By the application of this procedure, seven NFCs, derived from clove, cinnamon leaf and West Indian bay leaf were affirmed as "generally recognized as safe (GRAS)" under their conditions of intended use as flavor ingredients. An eighth NFC, an oleoresin of West Indian bay leaf, was affirmed based on its estimated intake, which is below the TTC of 0.15 µg/person per day for compounds with structural alerts for genotoxicity.


Asunto(s)
Cinnamomum zeylanicum/química , Aromatizantes/toxicidad , Laurus/química , Syzygium/química , Derivados de Alilbenceno , Animales , Anisoles/química , Anisoles/toxicidad , Seguridad de Productos para el Consumidor , Escherichia coli/efectos de los fármacos , Eugenol/química , Eugenol/toxicidad , Femenino , Aromatizantes/química , Humanos , Masculino , Ratones , Pruebas de Mutagenicidad , Nivel sin Efectos Adversos Observados , Aceites de Plantas/química , Aceites de Plantas/toxicidad , Ratas , Safrol/química , Safrol/toxicidad , Salmonella typhimurium/efectos de los fármacos
18.
Artículo en Inglés | MEDLINE | ID: mdl-32411089

RESUMEN

Background: Despite several authors who have hypothesized that alterations of small noncoding RNAs (miR) are implicated in the etiopathogenesis of polycystic ovarian syndrome (PCOS), contrasting findings have been reported so far. Discrepancies in body mass index (BMI) levels may account for these differences; therefore, the aim of the present study was to determine whether miR differed in serum samples collected from age- and BMI-matched control and PCOS women. Methods: In a cross-sectional study, miR were measured using quantitative polymerase chain reaction in 29 women with anovulatory PCOS women and 29 control women who were in the follicular phase of their menstrual cycle, from the local biobank. Results: One hundred seventy-six miR were detected, of which 15 miR passed the false discovery rate (FDR; p < 0.05) that differed between PCOS and control women. There was no association of the top 9 miR (p < 0.02) (miR-486-5p, miR-24-3p, miR-19b-3p, miR-22-3p, miR-19a-3p, miR-339-5p, miR-185-5p, miR-101-3p, miR-let-7i-5p) with BMI, androgen levels, insulin resistance, or antimullerian hormone (AMH) in either PCOS or normal women. Ingenuity pathway assessment showed the pathways were interrelated for abnormalities of the reproductive system. Conclusion: When the confounding influence of weight was accounted for, miR levels differed between anovulatory PCOS women and control women in the follicular phase of the menstrual cycle. Interestingly, the differing miR were associated with the pathways of reproductive abnormalities but did not associate with AMH or metabolic parameters.


Asunto(s)
Biomarcadores/análisis , Índice de Masa Corporal , MicroARNs/genética , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/patología , Adolescente , Adulto , Peso Corporal , Estudios de Casos y Controles , Estudios Transversales , Femenino , Estudios de Seguimiento , Humanos , Resistencia a la Insulina , Persona de Mediana Edad , Pronóstico , Adulto Joven
19.
Crit Rev Toxicol ; 50(1): 1-27, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32162576

RESUMEN

The Flavor and Extract Manufacturers Association (FEMA) Expert Panel relies on the weight of evidence from all available data in the safety evaluation of flavoring substances. This process includes data from genotoxicity studies designed to assess the potential of a chemical agent to react with DNA or otherwise cause changes to DNA, either in vitro or in vivo. The Panel has reviewed a large number of in vitro and in vivo genotoxicity studies during the course of its ongoing safety evaluations of flavorings. The adherence of genotoxicity studies to standardized protocols and guidelines, the biological relevance of the results from those studies, and the human relevance of these studies are all important considerations in assessing whether the results raise specific concerns for genotoxic potential. The Panel evaluates genotoxicity studies not only for evidence of genotoxicity hazard, but also for the probability of risk to the consumer in the context of exposure from their use as flavoring substances. The majority of flavoring substances have given no indication of genotoxic potential in studies evaluated by the FEMA Expert Panel. Examples illustrating the assessment of genotoxicity data for flavoring substances and the consideration of the factors noted above are provided. The weight of evidence approach adopted by the FEMA Expert Panel leads to a rational assessment of risk associated with consumer intake of flavoring substances under the conditions of use.


Asunto(s)
Aromatizantes/toxicidad , Pruebas de Mutagenicidad , Daño del ADN , Humanos
20.
Food Chem Toxicol ; 135: 110870, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31604112

RESUMEN

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. NFC flavor materials include a variety of essential oils and botanical extracts. The re-evaluation of NFCs is conducted based on a constituent-based procedure outlined in 2005 and updated in 2018 that evaluates the safety of NFCs for their intended use as flavor ingredients. This procedure is applied in the re-evaluation of the generally recognized as safe (GRAS) status of NFCs with constituent profiles that are dominated by alicyclic ketones such as menthone and carvone, secondary alcohols such as menthol and carveol, and related compounds. The FEMA Expert Panel affirmed the GRAS status of Peppermint Oil (FEMA 2848), Spearmint Oil (FEMA 3032), Spearmint Extract (FEMA 3031), Cornmint Oil (FEMA 4219), Erospicata Oil (FEMA 4777), Curly Mint Oil (FEMA 4778), Pennyroyal Oil (FEMA 2839), Buchu Leaves Oil (FEMA 2169), Caraway Oil (FEMA 2238) and Dill Oil (FEMA 2383) and determined FEMA GRAS status for Buchu Leaves Extract (FEMA 4923), Peppermint Oil, Terpeneless (FEMA 4924) and Spearmint Oil, Terpeneless (FEMA 4925).


Asunto(s)
Productos Biológicos/química , Aromatizantes/farmacología , Extractos Vegetales/farmacología , Plantas/química , Aromatizantes/normas , Estados Unidos , United States Food and Drug Administration
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA