Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Toxicol ; 95(8): 2883-2889, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34148101

RESUMEN

The International Agency for Research on Cancer (IARC) has recently proposed employing "ten key characteristics of human carcinogens" (TKCs) to determine the potential of agents for harmful effects. The TKCs seem likely to confuse the unsatisfactory correlation from testing regimes that have ignored the differences evident when cellular changes are compared in short and long-lived species, with their very different stem cell and somatic cell phylogenies. The proposed characteristics are so broad that their use will lead to an increase in the current unacceptably high rate of false positives. It could be an informative experiment to take well-established approved therapeutics with well-known human safety profiles and test them against this new TKC paradigm. Cancers are initiated and driven by heritable and transient changes in gene expression, expand clonally, and progress via additional associated acquired mutations and epigenetic alterations that provide cells with an evolutionary advantage. The genotoxicity testing protocols currently employed and required by regulation, emphasize testing for the mutational potential of the test agent. Two-year, chronic rodent cancer bioassays are intended to test for the entire spectrum of carcinogenic transformation. The use of cytotoxic doses causing increased, sustained cell proliferation that facilitates accumulated genetic damage leads to a high false-positive rate of tumor induction. Current cancer hazard assessment protocols and weight-of-the-evidence analysis of agent-specific cancer risk align poorly with the pathogenesis of human carcinoma and so need modernization and improvement in ways suggested here.


Asunto(s)
Carcinogénesis/inducido químicamente , Carcinógenos/toxicidad , Neoplasias/inducido químicamente , Animales , Pruebas de Carcinogenicidad/métodos , Carcinógenos/administración & dosificación , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Mutagenicidad/métodos , Medición de Riesgo , Roedores , Sensibilidad y Especificidad
2.
Toxicol Sci ; 180(2): 197, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33582818
3.
Toxicol Res (Camb) ; 7(5): 994, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30310677

RESUMEN

[This corrects the article DOI: 10.1039/C8TX00004B.].

4.
Toxicol Res (Camb) ; 7(4): 558-564, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30090606

RESUMEN

It is time to say goodbye to the standard two-year rodent bioassay. While a few, primarily genotoxic, compounds which are clearly associated with human cancer test positive in the bioassay, there is no science-based, sound foundation for presuming it provides either a valid broad (across different chemicals) capability for discerning potential human carcinogens or a valid starting point for making human risk assessment decisions. The two basic assumptions underlying the bioassay are: (1) rodent carcinogens are human carcinogens; and (2) results obtained at high doses are indicative of results that will occur at lower, environmentally relevant, doses. Both of these assumptions are not correct. Furthermore, a reevaluation of National Toxicology Program bioassay data has revealed that if the dose group size were increased from 50 to 200 rodents per group the number of bioassays deemed to be positive would increase from approximately 50% to very close to 100%. Thus, under the extreme conditions of the bioassay (e.g., high doses, lifetime exposure and, at times, a non-physiological route of administration) virtually all chemicals tested could be made into rodent carcinogens. In recent years there have been a number of proposals to move away from the standard bioassay. In particular, a recently formulated decision tree (Cohen, 2017), which places an emphasis on dose-response relationships and invites the use of MOA information, provides a sound basis for moving on from the bioassay and towards a rational approach to both identify chemicals which appear to have the potential to cause cancer in humans and take dose-response relationships into consideration in order to place the extent, if any, of the risk they might pose into proper perspective.

5.
Regul Toxicol Pharmacol ; 97: A1-A3, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30017904

RESUMEN

Several recent and prominent articles in Science and Nature deliberately mischaracterized the nature of genuine scientific evidence. Those articles take issue with the United States Environmental Protection Agency's recent proposal to structure its policies and rules only from studies with transparently published raw data. The articles claim it is an effort to obfuscate with transparency, by eliminating a host of studies not offering raw data. A remarkable declaration by a Science editorial is that properly trained experts can verify the scientific evidence of studies without access to raw data, We assert the Agency's proposal must be sustained. Transparency in reporting is a fundamental ethical imperative of objective scientific research justifying massive official regulations and policies. Putative hazards bereft of independent scientific evidence will continue to stoke public anxieties, calling for precautionary regulations and policies. These should rely not on spurious science but on transparent tradeoffs between the smallest exposures compatible with utility and with social perceptions of affordable precaution.


Asunto(s)
Agencias Gubernamentales/organización & administración , Formulación de Políticas , Animales , Humanos , Estados Unidos , United States Environmental Protection Agency
6.
Curr Opin Toxicol ; 3: 20-24, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30740577

RESUMEN

The rapidly evolving field of epigenetic regulation of gene expression is having an impact across the spectrum of biomedical research. Toxicologists have embraced this area as evidenced by their increasing focus on discerning potential epigenetic mechanisms underlying mechanisms by which chemical and physical agents might cause toxicity. It is not surprising that an interest in epigenetic mechanisms of toxicity would lead to a desire to incorporate an epigenetic component into safety assessment. However, premature movement in this direction carries the risk of imposing more confusion than light. This commentary provides an overview of epigenetics, with an emphasis on how the various epigenetic parameters are integrated, as a basis for understanding the complexity behind the desire to include epigenetic evaluations in safety evaluations. Basically, we have much more to learn before turning the goal into a reality. However, considerable progress has been made with regard to using epigenetic profiles as signatures of xenobiotic exposure.

9.
Toxicology ; 371: 12-16, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27639665

RESUMEN

A public appeal has been advanced by a large group of scientists, concerned that science has been misused in attempting to quantify and regulate unmeasurable hazards and risks.1 The appeal recalls that science is unable to evaluate hazards that cannot be measured, and that science in such cases should not be invoked to justify risk assessments in health, safety and environmental regulations. The appeal also notes that most national and international statutes delineating the discretion of regulators are ambiguous about what rules of evidence ought to apply. Those statutes should be revised to ensure that the evidence for regulatory action is grounded on the standards of the scientific method, whenever feasible. When independent scientific evidence is not possible, policies and regulations should be informed by publicly debated trade-offs between socially desirable uses and social perceptions of affordable precaution. This article explores the premises, implications and actions supporting the appeal and its objectives.


Asunto(s)
Salud/legislación & jurisprudencia , Salud/normas , Legislación como Asunto/normas , Medición de Riesgo/legislación & jurisprudencia , Medición de Riesgo/normas , Seguridad/legislación & jurisprudencia , Seguridad/normas , Ciencia/legislación & jurisprudencia , Ciencia/normas , Toxicología/legislación & jurisprudencia , Toxicología/normas , Animales , Modelos Animales de Enfermedad , Humanos
11.
Crit Rev Toxicol ; 46(1): 43-53, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26451723

RESUMEN

The HESI-led RISK21 effort has developed a framework supporting the use of twenty-first century technology in obtaining and using information for chemical risk assessment. This framework represents a problem formulation-based, exposure-driven, tiered data acquisition approach that leads to an informed decision on human health safety to be made when sufficient evidence is available. It provides a transparent and consistent approach to evaluate information in order to maximize the ability of assessments to inform decisions and to optimize the use of resources. To demonstrate the application of the framework's roadmap and matrix, this case study evaluates a large number of chemicals that could be present in drinking water. The focus is to prioritize which of these should be considered for human health risk as individual contaminants. The example evaluates 20 potential drinking water contaminants, using the tiered RISK21 approach in combination with graphical representation of information at each step, using the RISK21 matrix. Utilizing the framework, 11 of the 20 chemicals were assigned low priority based on available exposure data alone, which demonstrated that exposure was extremely low. The remaining nine chemicals were further evaluated, using refined estimates of toxicity based on readily available data, with three deemed high priority for further evaluation. In the present case study, it was determined that the greatest value of additional information would be from improved exposure models and not from additional hazard characterization.


Asunto(s)
Agua Potable/análisis , Exposición a Riesgos Ambientales/efectos adversos , Sustancias Peligrosas/toxicidad , Animales , Toma de Decisiones , Exposición a Riesgos Ambientales/análisis , Humanos , Modelos Animales , Modelos Teóricos , Medición de Riesgo , Pruebas de Toxicidad , Estados Unidos , United States Environmental Protection Agency
13.
Toxicology ; 321: 80-8, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24675475

RESUMEN

Toxicogenomics (TGx) is employed frequently to investigate underlying molecular mechanisms of the compound of interest and, thus, has become an aid to mode of action determination. However, the results and interpretation of a TGx dataset are influenced by the experimental design and methods of analysis employed. This article describes an evaluation and reanalysis, by two independent laboratories, of previously published TGx mouse liver microarray data for a triazole fungicide, propiconazole (PPZ), and the anticonvulsant drug phenobarbital (PB). Propiconazole produced an increase incidence of liver tumors in male CD-1 mice only at a dose that exceeded the maximum tolerated dose (2500 ppm). Firstly, we illustrate how experimental design differences between two in vivo studies with PPZ and PB may impact the comparisons of TGx results. Secondly, we demonstrate that different researchers using different pathway analysis tools can come to different conclusions on specific mechanistic pathways, even when using the same datasets. Finally, despite these differences the results across three different analyses also show a striking degree of similarity observed for PPZ and PB treated livers when the expression data are viewed as major signaling pathways and cell processes affected. Additional studies described here show that the postulated key event of hepatocellular proliferation was observed in CD-1 mice for both PPZ and PB, and that PPZ is also a potent activator of the mouse CAR nuclear receptor. Thus, with regard to the events which are hallmarks of CAR-induced effects that are key events in the mode of action (MOA) of mouse liver carcinogenesis with PB, PPZ-induced tumors can be viewed as being promoted by a similar PB-like CAR-dependent MOA.


Asunto(s)
Carcinógenos , Fungicidas Industriales/toxicidad , Hipnóticos y Sedantes/toxicidad , Fenobarbital/toxicidad , Receptores Citoplasmáticos y Nucleares/metabolismo , Triazoles/toxicidad , Animales , Pruebas de Carcinogenicidad , Proliferación Celular/efectos de los fármacos , Receptor de Androstano Constitutivo , Femenino , Genes Reporteros/efectos de los fármacos , Genes Reporteros/genética , Hepatocitos/efectos de los fármacos , Masculino , Ratones , Neoplasias Experimentales/inducido químicamente , Tamaño de los Órganos/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Toxicogenética , Aumento de Peso/efectos de los fármacos
14.
Nucleic Acids Res ; 42(7): 4180-95, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24464994

RESUMEN

Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and ß-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis.


Asunto(s)
Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Fenobarbital/toxicidad , Transcripción Genética/efectos de los fármacos , Animales , Sitios de Unión , Proliferación Celular/efectos de los fármacos , Biología Computacional/métodos , Simulación por Computador , Receptor de Androstano Constitutivo , Redes Reguladoras de Genes , Hígado/efectos de los fármacos , Hígado/metabolismo , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Motivos de Nucleótidos , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , beta Catenina/metabolismo
15.
Crit Rev Toxicol ; 44(1): 64-82, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24180433

RESUMEN

The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are important nuclear receptors involved in the regulation of cellular responses from exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non-genotoxic indirect CAR activator, which induces cytochrome P450 (CYP) and other xenobiotic metabolizing enzymes and is known to produce liver foci/tumors in mice and rats. From literature data, a mode of action (MOA) for PB-induced rodent liver tumor formation was developed. A MOA for PXR activators was not established owing to a lack of suitable data. The key events in the PB-induced liver tumor MOA comprise activation of CAR followed by altered gene expression specific to CAR activation, increased cell proliferation, formation of altered hepatic foci and ultimately the development of liver tumors. Associative events in the MOA include altered epigenetic changes, induction of hepatic CYP2B enzymes, liver hypertrophy and decreased apoptosis; with inhibition of gap junctional intercellular communication being an associative event or modulating factor. The MOA was evaluated using the modified Bradford Hill criteria for causality and other possible MOAs were excluded. While PB produces liver tumors in rodents, important species differences were identified including a lack of cell proliferation in cultured human hepatocytes. The MOA for PB-induced rodent liver tumor formation was considered to be qualitatively not plausible for humans. This conclusion is supported by data from a number of epidemiological studies conducted in human populations chronically exposed to PB in which there is no clear evidence for increased liver tumor risk.


Asunto(s)
Neoplasias Hepáticas/patología , Hígado/efectos de los fármacos , Fenobarbital/toxicidad , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas , Proliferación Celular/efectos de los fármacos , Receptor de Androstano Constitutivo , Citocromo P-450 CYP2B6 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/inducido químicamente , Receptor X de Pregnano , Receptores de Esteroides/metabolismo , Xenobióticos/toxicidad
16.
Environ Mol Mutagen ; 53(1): 1-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22329022

RESUMEN

Propiconazole (PPZ) is a conazole fungicide that is not mutagenic, clastogenic, or DNA damaging in standard in vitro and in vivo genetic toxicity tests for gene mutations, chromosome aberrations, DNA damage, and cell transformation. However, it was demonstrated to be a male mouse liver carcinogen when administered in food for 24 months only at a concentration of 2,500 ppm that exceeded the maximum tolerated dose based on increased mortality, decreased body weight gain, and the presence of liver necrosis. PPZ was subsequently tested for mutagenicity in the Big Blue® transgenic mouse assay at the 2,500 ppm dose, and the result was reported as positive by Ross et al. ([2009]: Mutagenesis 24:149-152). Subsets of the mutants from the control and PPZ-exposed groups were sequenced to determine the mutation spectra and a multivariate clustering analysis method purportedly substantiated the increase in mutant frequency with PPZ (Ross and Leavitt. [2010]: Mutagenesis 25:231-234). However, as reported here, the results of the analysis of the mutation spectra using a conventional method indicated no treatment-related differences in the spectra. In this article, we re-examine the Big Blue® mouse findings with PPZ and conclude that the compound does not act as a mutagen in vivo.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Mutación/efectos de los fármacos , Triazoles/toxicidad , Animales , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos
17.
Crit Rev Toxicol ; 41(6): 507-44, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21591905

RESUMEN

Quantitative methods for estimation of cancer risk have been developed for daily, lifetime human exposures. There are a variety of studies or methodologies available to address less-than-lifetime exposures. However, a common framework for evaluating risk from less-than-lifetime exposures (including short-term and/or intermittent exposures) does not exist, which could result in inconsistencies in risk assessment practice. To address this risk assessment need, a committee of the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute conducted a multisector workshop in late 2009 to discuss available literature, different methodologies, and a proposed framework. The proposed framework provides a decision tree and guidance for cancer risk assessments for less-than-lifetime exposures based on current knowledge of mode of action and dose-response. Available data from rodent studies and epidemiological studies involving less-than-lifetime exposures are considered, in addition to statistical approaches described in the literature for evaluating the impact of changing the dose rate and exposure duration for exposure to carcinogens. The decision tree also provides for scenarios in which an assumption of potential carcinogenicity is appropriate (e.g., based on structural alerts or genotoxicity data), but bioassay or other data are lacking from which a chemical-specific cancer potency can be determined. This paper presents an overview of the rationale for the workshop, reviews historical background, describes the proposed framework for assessing less-than-lifetime exposures to potential human carcinogens, and suggests next steps.


Asunto(s)
Carcinógenos/toxicidad , Exposición a Riesgos Ambientales/normas , Mutágenos/toxicidad , Bioensayo/métodos , Carcinógenos/administración & dosificación , Bases de Datos Factuales , Árboles de Decisión , Relación Dosis-Respuesta a Droga , Determinación de Punto Final , Contaminación de Alimentos/análisis , Guías como Asunto , Productos Domésticos/efectos adversos , Humanos , Mutágenos/administración & dosificación , National Institute of Environmental Health Sciences (U.S.) , Neoplasias/inducido químicamente , Plaguicidas/efectos adversos , Medición de Riesgo , Factores de Tiempo , Estados Unidos , United States Environmental Protection Agency , United States Food and Drug Administration
18.
Toxicol Sci ; 120(2): 339-48, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21212295

RESUMEN

Lipopolysaccharide (LPS) is a bacterial endotoxin and a potent B-cell activator capable of inducing a humoral immune response. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a well-established immunotoxicant that can suppress humoral immune responses, including those initiated by LPS stimulation. In murine models, TCDD-induced suppression of the LPS-activated primary immunoglobulin M (IgM) response is observed both in vivo and in vitro and is typically evaluated as a decrease in the number of IgM antibody-forming cells. The TCDD-induced suppression of the primary humoral immune response occurs, at least in part, upstream of IgM production. The current study was designed as an initial test of our hypothesis that altered DNA methylation, an epigenetic event, is involved in the LPS-induced IgM response by splenocytes as is the suppression of this response by TCDD. Splenocyte-derived DNA from mice treated in vivo with sesame oil + PBS, LPS, TCDD, or LPS + TCDD was used for the current investigation. DNA methylation was evaluated using a technique that permits assessment of the methylation status of multiple genomic regions simultaneously in an unbiased fashion (no specific genes or genomic regions are preselected). Additionally, the expression of selected genes was determined. Our results indicate that treatment with LPS or TCDD can alter DNA methylation and, importantly, combined TCDD + LPS results in altered DNA methylation that was not simply the addition of the changes discerned in the individual treatment groups. Thus, we have identified cross talk between LPS and TCDD at the level of DNA methylation and gene expression.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Inmunoglobulina M/inmunología , Lipopolisacáridos/farmacología , Dibenzodioxinas Policloradas/toxicidad , Bazo/inmunología , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Metilación de ADN/genética , ADN Complementario/genética , Electroforesis Capilar , Femenino , Perfilación de la Expresión Génica , Inmunidad Humoral/efectos de los fármacos , Inmunidad Humoral/genética , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Bazo/citología , Bazo/efectos de los fármacos
19.
Toxicol Sci ; 116(2): 375-81, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20430866

RESUMEN

The International Life Sciences Institute, Health and Environmental Sciences Institute sponsored a workshop entitled "State of the Science: Evaluating Epigenetic Changes," hosted by the National Institute of Environmental Health Sciences, Research Triangle Park, NC, 28-30 October 2009. The goal was to evaluate and enhance the scientific knowledge base regarding epigenetics and its role in disease, including potential relationships between epigenetic changes and transgenerational effects. A distinguishing aspect of the workshop was the highly interactive discussion session on the final morning. Meeting participants formed breakout groups (with representation from academia, industry, and government in each group) and were tasked with integrating their previous knowledge of epigenetics with what was learned during the workshop. The participants addressed the issue of what needs to be known prior to thinking about incorporating an epigenetic evaluation into safety assessment. To this end, the breakout groups were asked to address the following questions: (1) What model systems might be employed to evaluate the ability of a chemical to produce an epigenetic change (affecting the F1 and/or F3 generation); (2) What end points/targets might be evaluated; (3) What techniques might be employed; and (4) Regulatory Perspective: When is it appropriate to incorporate "new" science, in this case epigenetics, into the regulatory process? What does one need to know, what are the pitfalls and how might these be overcome/avoided? The basis of this paper is a synopsis of these discussions. The workshop highlighted the fact that the field of epigenetics is evolving at a very rapid pace and indicated that a great deal needs to be learned prior to being able to rationally incorporate an epigenetic evaluation into safety assessment. The value of the workshop is that it called attention to key data/knowledge gaps that should serve to focus attention on the areas where research and new thinking are needed to better understand epigenetics and its relationship to safety assessment.


Asunto(s)
Epigénesis Genética/efectos de los fármacos , Medición de Riesgo , Animales , Metilación de ADN , Determinación de Punto Final , Humanos , Salud Pública
20.
Toxicol Sci ; 110(2): 319-33, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19482888

RESUMEN

Our overall goal is to elucidate progressive changes, in expression and methylation status, of genes which play key roles in phenobarbital (PB)-induced liver tumorigenesis, with an emphasis on their potential to affect signaling through critical pathways involved in the regulation of cell growth and differentiation. PB-elicited unique expression changes of genes, including some of those identified previously as exhibiting regions of altered DNA methylation, were discerned in precancerous liver tissue and/or individual liver tumors from susceptible constitutive active/androstane receptor (CAR) wild-type (WT) compared with resistant CAR knockout (KO) mice. Many of these function in crucial cancer-related processes, for example, angiogenesis, apoptosis, cell cycle, DNA methylation, Hedgehog signaling, invasion/metastasis, Notch signaling, and Wnt signaling. Furthermore, a subset of the uniquely altered genes contained CAR response elements (CAREs). This included Gadd45b, a coactivator of CAR and inhibitor of apoptosis, and two DNA methyltransferases (Dnmt1, Dnmt3a). The presence of CAREs in Dnmts suggests a potential direct link between PB and altered DNA methylation. The current data are juxtaposed with the effects of PB on DNA methylation and gene expression which occurred uniquely in liver tumor-prone B6C3F1 mice, as compared with the resistant C57BL/6, following 2 or 4 weeks of treatment. Collectively, these data reveal a comprehensive view of PB-elicited molecular alterations (i.e., changes in gene expression and DNA methylation) that can facilitate hepatocarcinogenesis. Notably, candidate genes for initial "fingerprints" of early and late stages of PB-induced tumorigenesis are proposed.


Asunto(s)
Transformación Celular Neoplásica/genética , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Lesiones Precancerosas/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Apoptosis/genética , Ciclo Celular/genética , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/metabolismo , Receptor de Androstano Constitutivo , Dietilnitrosamina , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenobarbital , Lesiones Precancerosas/inducido químicamente , Lesiones Precancerosas/metabolismo , Receptores Citoplasmáticos y Nucleares/deficiencia , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...