Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Microorganisms ; 12(4)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674776

RESUMEN

Pickled cabbage, a traditional fermented food rich in functional microorganisms, can effectively control hyperuricemia and gout. In this study, a Priestia megaterium ASC-1 strain with strong uric acid (UA) degradation ability was isolated from pickled cabbage. After oral administration for 15 days, ASC-1 was stably colonized in the rats in this study. ASC-1 significantly reduced UA levels (67.24%) in hyperuricemic rats. Additionally, ASC-1 alleviated hyperuricemia-related inflammatory response, oxidative stress, and blood urea nitrogen. Intestinal microbial diversity results showed that ASC-1 restored intestinal injury and gut flora dysbiosis caused by hyperuricemia. These findings suggest that P. megaterium ASC-1 may be used as a therapeutic adjuvant for the treatment of hyperuricemia.

2.
Heliyon ; 10(5): e26980, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463779

RESUMEN

In this study, we have developed a novel fluorescent "OFF-ON" quantum dots (QDs) sensor based on CdTe/CdS/SiO2 cores. Ammonium pyrrolidine dithiocarbamate (APDC), ethylenediamine tetraacetic acid (EDTA), and 1,10-phenanthroline (Phen) served as potential chemical etchants. Among these three etchants, APDC exhibited the most pronounced quenching effect (94.06%). The APDC-etched CdTe/CdS/SiO2 QDs demonstrated excellent optical properties: the fluorescence of the APDC-etched CdTe/CdS/SiO2 QDs system (excitation wavelength: 365 nm and emission wavelength: 622 nm) was significantly and selectively restored upon the addition of cadmium ions (Cd2+) (89.22%), compared to 15 other metal ions. The linear response of the APDC-etched CdTe/CdS/SiO2 QDs was observed within the cadmium ion (Cd2+) concentration ranges of 0-20 µmol L-1 and 20-160 µmol L-1 under optimized conditions (APDC: 300 µmol L-1, pH: 7.0, reaction time: 10 min). The detection limit (LOD) of the APDC-etched CdTe/CdS/SiO2 QDs for Cd2+ was 0.3451 µmol L-1 in the range of 0-20 µmol L-1. The LOD achieved by the QDs in this study surpasses that of the majority of previously reported nanomaterials. The feasibility of using APDC-etched CdTe/CdS/SiO2 QDs for Cd2+ detection in seawater, freshwater, and milk samples was verified, with average recoveries of 95.27%-110.68%, 92%-106.47%, and 90.73%-111.60%, respectively, demonstrating satisfactory analytical precision (RSD ≤ 8.26).

3.
J Hazard Mater ; 468: 133831, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402684

RESUMEN

Microorganisms, especially viruses, cause disease in both humans and animals. Environmental chemical pollutants including microplastics, pesticides, antibiotics sand air pollutants arisen from human activities affect both animal and human health. This review assesses the impact of chemical and biological contaminants (virus and bacteria) on viruses including its life cycle, survival, mutations, loads and titers, shedding, transmission, infection, re-assortment, interference, abundance, viral transfer between cells, and the susceptibility of the host to viruses. It summarizes the sources of environmental contaminants, interactions between contaminants and viruses, and methods used to mitigate such interactions. Overall, this review provides a perspective of environmentally co-occurring contaminants on animal viruses that would be useful for future research on virus-animal-human-ecosystem harmony studies to safeguard human and animal health.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Plaguicidas , Virus , Contaminantes Químicos del Agua , Animales , Humanos , Contaminantes Ambientales/toxicidad , Contaminantes Atmosféricos/toxicidad , Microplásticos , Plásticos , Monitoreo del Ambiente/métodos , Ecosistema , Plaguicidas/toxicidad , Antibacterianos , Bacterias , Contaminantes Químicos del Agua/química
4.
Food Funct ; 15(3): 1655-1670, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38251410

RESUMEN

The effects of fish oil (FO) and Bacillus subtilis jzxj-7 (JZXJ-7) on the colonic physiology, bacteria, metabolites, and gene expressions were studied in C57BL/6J mice. Co-administration of FO and JZXJ-7 was more beneficial than individual supplementation, as evidenced by improved growth performance, enhanced colon crypt depth and goblet cell numbers. FO + JZXJ-7 inhibited colonic fibrosis by downregulating fibrosis marker protein expression and upregulating occludin, claudin-2 and claudin-4 gene expressions. FO + JZXJ-7 ameliorated oxidative stress and inflammation by increasing catalase, superoxide dismutase, total anti-oxidation capacity, and reducing colon tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and IL-6 levels. Mechanistically, FO + JZXJ-7 modulated the colon micro-ecological environment by enriching Roseburia, Lachnospiraceae NK4B4, Faecalibaculum and Lactococcus and its derived short-chain fatty acids, and activating Ppara and Car1 mediated peroxisome proliferators-activated receptor (PPAR) and phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling. Overall, FO + JZXJ-7 may serve as a promising nutraceutical to improve health by boosting the growth of colonic beneficial bacteria, altering metabolic phenotype, and regulating gene expression.


Asunto(s)
Aceites de Pescado , Microbiota , Ratones , Animales , Aceites de Pescado/farmacología , Bacillus subtilis , Fosfatidilinositol 3-Quinasas , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa , Perfilación de la Expresión Génica , Metaboloma , Fibrosis
5.
Nutrients ; 16(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38257155

RESUMEN

Elephantopus scaber L. (ESL) is a Chinese herb that is used both as a food and medicine, often being added to soups in summer in south China to relieve heat stress (HS), but its exact mechanism of action is unknown. In this study, heat-stressed mice were gavaged with ESL polysaccharides (ESLP) at 0, 150, 300, and 450 mg/kg/d-1 (n = 5) for seven days. The gut microbiota composition, short-chain fatty acids (SCFAs), seven neurotransmitters in faeces, expression of intestinal epithelial tight junction (TJ) proteins (Claudin-1, Occludin), and serum inflammatory cytokines were measured. The low dose of ESLP (ESLL) improved the adverse physiological conditions; significantly reduced the cytokines (TNF-α, IL-1ß, IL-6) and lipopolysaccharide (LPS) levels (p < 0.05); upregulated the expression of Claudin-1; restored the gut microbiota composition including Achromobacter and Oscillospira, which were at similar levels to those in the normal control group; significantly increased beneficial SCFAs like butyric acid and 5-HT levels in the faeces of heat-stressed mice; and significantly decreased the valeric acid and glutamic acid level. The level of inflammatory markers significantly correlated with the above-mentioned indicators (p < 0.05). Thus, ESLL reduced the HS-induced systemic inflammation by optimizing gut microbiota (Achromobacter, Oscillospira) abundance, increasing gut beneficial SCFAs like butyric acid and 5-HT levels, and reducing gut valeric and glutamic acid levels.


Asunto(s)
Asteraceae , Microbioma Gastrointestinal , Trastornos de Estrés por Calor , Animales , Ratones , Claudina-1 , Serotonina , Polisacáridos/farmacología , Ácido Butírico , Citocinas , Ácido Glutámico
6.
Carbohydr Polym ; 321: 121279, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739521

RESUMEN

Heat stress (HS) has a negative impact on animal health. A modified chitosan-gentamicin conjugate (CS-GT) was prepared to investigate its potential protective effects and mechanism of action on heat stress-induced intestinal mucosa injury in IPEC-J2 cells and mouse 3D intestinal organs in a mouse model. CS-GT significantly (P < 0.01) reversed the decline in transmembrane resistance and increased the FITC-dextran permeability of the IPEC-J2 monolayer fusion epithelium caused by heat stress. Heat stress decreased the expression of the tight binding proteins occludin, claudin1, and claudin2. However, pretreatment with CS-GT significantly increased (P < 0.01) the expression of these tight binding proteins. Mechanistically, CS-GT inhibited the activation of the TLR4/STAT6/MYLK signaling pathway induced by heat stress. Molecular docking showed that CS-GT can bind effectively with TLR4. In conclusion, CS-GT alleviates heat stress-induced intestinal mucosal damage both in vitro and in vivo. This effect is mediated, at least partly, by the inhibition of the TLR4/STAT6/MYLK signaling pathway and upregulation of tight junction proteins. These findings suggest that CS-GT may have therapeutic potential in the prevention and treatment of heat stress-related intestinal injury.


Asunto(s)
Quemaduras , Quitosano , Animales , Ratones , Quitosano/farmacología , Receptor Toll-Like 4 , Simulación del Acoplamiento Molecular , Gentamicinas , Transducción de Señal
7.
J Hazard Mater ; 459: 132218, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37552922

RESUMEN

Aflatoxin B1 (AFB1) is the most potent known naturally occurring carcinogen and pose an immense threat to food safety and human health. L-Cysteine hydrochloride (L-CH) is a food additive often used as a fruit and vegetable preservative and also to approved bread consistency. In this study, we investigated the effects and mechanisms of L-CH as an antimicrobial on the growth of Aspergillus flavus (A. flavus) and AFB1 biosynthesis. L-CH significantly inhibited A. flavus mycelial growth, affected mycelial morphology and AFB1 synthesis. Furthermore, L-CH induced glutathione (GSH) synthesis which scavenged intracellular reactive oxygen species (ROS). RNA-Seq indicated that L-CH inhibited hyphal branching, and spore and sclerotia formation by controlling cell wall and spore development-related genes. Activation of the GSH metabolic pathway eliminated intracellular ROS, leading to hyphal dwarfing. L-CH treatment downregulated most of the Aflatoxin (AF) cluster genes and aflS, aflR, AFLA_091090 transcription factors. This study provides new insights into the molecular mechanism of L-CH control of A. flavus and AFB1 foundation. We believe that L-CH could be used as a food additive to control AFB1 in foods and also in the environment.


Asunto(s)
Antioxidantes , Aspergillus flavus , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cisteína/farmacología , Cisteína/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Aflatoxina B1/análisis , Glutatión/metabolismo , Aditivos Alimentarios
8.
Sci Total Environ ; 900: 165850, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37516178

RESUMEN

As one of the most accumulative toxic heavy metals, cadmium (Cd) poses a major threat to human health. Bacterial siderophores, as small molecules with metal-absorbing ability, have great potential activity for Cd-reduction. In this study, the siderophore-producing bacterialstrain FCH-CR2 was isolated from a high-Cd contaminated soil using the CAS method. Leclercia adecarboxylata was identified through 16S rRNA sequence, homology analysis, colony morphology, physiological and biochemical tests. A siderophore, catechol type 2,3-dihydroxy-N-benzoyl-l-serine (DHBS) secreted by FCH-CR2, was purified using RP-HPLC and identified by LC-MS/MS. Intraperitoneal injection of DHBS significantly increased fecal Cd levels, and reduced Cd accumulation in organs. In density flooding theory (DFT) analysis, DHBS may bind to Cd via the hydroxyl site on the benzene ring. Besides, the isothermal titration calorimetry (ITC) assay revealed that the formation of Cd-DHBS is a spontaneous and endothermic reaction with ΔG = -21.4 kJ/mol and ΔH = 1.51 ± 0.142 kJ/mol.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Sideróforos/análisis , Sideróforos/metabolismo , Cadmio/análisis , ARN Ribosómico 16S/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Quelantes , Contaminantes del Suelo/análisis , Suelo/química , Metales Pesados/análisis
9.
Foods ; 12(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37174368

RESUMEN

Free amino acids (AAs) formed in fermented meat products are important nitrogen sources for the survival and metabolism of contaminating fungi. These AAs are mainly regulated by the TORC1-Tap42 signaling pathway. Fusarium spp., a common contaminant of fermented products, is a potential threat to food safety. Therefore, there is an urgent need to clarify the effect of different AAs on Fusarium spp. growth and metabolism. This study investigated the effect of 18 AAs on Fusarium oxysporum (Fo17) growth, sporulation, T-2 toxin (T-2) synthesis and Tri5 expression through Tap42 gene regulation. Co-immunoprecipitation and Q Exactive LC-MS/MS methods were used to detect the interacting protein of Tap42 during specific AA treatment. Tap42 positively regulated L-His, L-Ile and L-Tyr absorption for Fo17 colony growth. Acidic (L-Asp, L-Glu) and sulfur-containing (L-Cys, L-Met) AAs significantly inhibited the Fo17 growth which was not regulated by Tap42. The L-Ile and L-Pro addition significantly activated the sporulation of ΔFoTap42. L-His and L-Ser inhibited the sporulation of ΔFoTap42. In T-2 synthesis, ΔFoTap42 was increased in GYM medium, but was markedly inhibited in L-Asp and L-Glu addition groups. Dose-response experiments showed that 10-70 mg/mL of neutral AA (L-Thr) and alkaline AA (L-His) significantly increased the T-2 production and Tri5 expression of Fo17, but Tri5 expression was not activated in ΔFoTap42. Inhibition of T-2 synthesis and Tri5 expression were observed in Fo17 following the addition of 30-70 mg/mL L-Asp. KEGG enrichment pathway analysis demonstrated that interacting proteins of Tap42 were from glycerophospholipid metabolism, pentose phosphate pathway, glyoxylate and dicarboxylate metabolism, glycolysis and gluconeogenesis, and were related to the MAPK and Hippo signaling pathways. This study enhanced our understanding of AA regulation in fermented foods and its effect on Fusarium growth and metabolism, and provided insight into potential ways to control fungal contamination in high-protein fermented foods.

10.
Molecules ; 28(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37241957

RESUMEN

As a common harmful pollutant, cadmium (Cd) can easily enter the human body through the food chain, posing a major threat to human health. Gut microbiota play a key role in Cd absorption. Docosahexaenoic acid (DHA) is thought to have a potential role in the treatment of Cd poisoning. This study investigated the therapeutic effect and mechanism of DHA in Cd-exposed mice from the perspective of the gut microbiota. The results showed that DHA significantly increased the Cd content in feces and decreased the Cd accumulation in the organs of mice. The gut microbiota results showed that DHA significantly restored the abundance of Parabacteroides in the gut microbiota of Cd-exposed mice. Parabacteroides distasonis (P. distasonis), a representative strain of the Parabacteroides, also showed Cd- and toxicity-reduction capabilities. P. distasonis significantly restored the gut damage caused by Cd exposure. At the same time, P. distasonis reduced the Cd content in the liver, spleen, lung, kidneys, gut, and blood to varying degrees and significantly increased the Cd content in feces. The succinic acid produced by P. distasonis plays an important role in promoting Cd excretion in Cd-exposed mice. Therefore, these results suggest that P. distasonis may have a potential role in DHA-mediated Cd excretion in Cd-exposed mice.


Asunto(s)
Líquidos Corporales , Microbioma Gastrointestinal , Humanos , Animales , Ratones , Cadmio/toxicidad , Ácidos Docosahexaenoicos/farmacología , Heces
11.
J Agric Food Chem ; 71(18): 6920-6934, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37126589

RESUMEN

The effect of fish oil (FO) on colonic function, immunity, and microbiota was investigated in Vibrio parahaemolyticus (Vp)-infected C57BL/6J mice. Mice intragastrically presupplemented with FO (4.0 mg) significantly reduced Vp infection as evidenced by stabilizing body weight and reducing disease activity index score and immune organ ratios. FO minimized colonic pathological damage, strengthened the mucosal barrier, and sustained epithelial permeability by increasing epithelial crypt depth, goblet cell numbers, and tight junctions and inhibiting colonic collagen accumulation and fibrosis protein expression. Mechanistically, FO enhanced immunity by decreasing colonic CD3+ T cells, increasing CD4+ T cells, downregulating the TLR4 pathway, reducing interleukin-17 (IL-17) and tumor necrosis factor-α, and increasing immune cytokine IL-4 and interferon-γ levels. Additionally, FO maintained colonic microbiota eubiosis by improving microbial diversity and boosting Clostridium, Akkermansia, and Roseburia growth and their derived propionic acid and butyric acid levels. Collectively, FO alleviated Vp infection by enriching beneficial colonic microbiota and metabolites and restoring immune homeostasis.


Asunto(s)
Microbioma Gastrointestinal , Homeostasis , Vibriosis , Vibrio parahaemolyticus , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Aceites de Pescado/farmacología , Homeostasis/efectos de los fármacos , Vibriosis/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Metaboloma , Mucosa Gástrica/metabolismo
12.
Foods ; 12(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36981204

RESUMEN

Fusarium oxysporum (F. oxysporum) is a common contaminant of dried fish, and the T-2 synthesis by this organism in dried fish products poses a serious public health risk. In this study, we investigated the effects of iturin A, a cyclic lipopeptide produced by Bacillus subtilis, on the growth and synthesis of the T-2 toxin of F. oxysporum, and transcriptomics was conducted. Results showed that the inhibitory effect of iturin A on F. oxysporum was significantly enhanced with an increase in iturin A concentrations. More specifically, compared with the control group, all indexes in the iturin A treatment group with 50 µg/mL were decreased to 24.84 mm, 0.33 × 106 cfu/mL, and 5.86 ng/mL for the colony diameter, number of spores, and concentration of T-2 toxin, respectively. Furthermore, iturin A was proven to destroy the integrity of cell membranes and cause a significant increase in ROS at 25 µg/mL or 50 µg/mL. Transcriptomic analysis revealed that with the treatment of iturin A, the genes of the oxidation-reduction process were up-regulated, while the gene expression of mycelial growth, cell integrity, transmembrane transport, energy metabolism, and others were down-regulated. More importantly, the Tri5 gene cluster was significantly inhibited. This study provided new insights into the mechanism for the inhibitory effect of iturin A on the growth and T-2 toxin synthesis of F. oxysporum and theoretical guidance for the application of iturin A in the preservation of dried aquatic products.

13.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499044

RESUMEN

As a global pollutant, cadmium (Cd) can easily enter the body through food chains, threatening human health. Most Cd is initially absorbed in the gut, with the gut microbiota playing a pivotal role in reducing Cd absorption and accumulation. This study assessed the effects of three fatty acids on Cd accumulation and toxicity in Cd-exposed mice. The results showed that oleic acid (OA) was the most effective in facilitating Cd excretion in mice among these fatty acids. The use of OA led to reduced Cd accumulation in the organs and increased Cd content in the feces. The metagenomic analysis of the gut microbiota showed that the genus Burkholderia was the most significantly restored by OA in Cd-exposed mice. Burkholderia cepacia, as the type species for the genus Burkholderia, also exhibited strong Cd tolerance after treatment with OA. Furthermore, the electron microscopy analysis showed that most of the Cd was adsorbed on the surface of B. cepacia, where the extracellular polymeric substances (EPSs) secreted by B. cepacia play a key role, displaying a strong capacity for Cd adsorption. The peak at 2355 cm-1 and the total sulfhydryl group content of EPSs showed significant increases following co-treatment with Cd and OA. The results demonstrated the potential roles that gut Burkholderia may play in OA-mediated Cd excretion in mice.


Asunto(s)
Burkholderia , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Cadmio/toxicidad , Ácido Oléico/farmacología , Heces
14.
ACS Nano ; 16(12): 20622-20632, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36469037

RESUMEN

The use of nanomaterials and nanotechnology to construct a smart pesticide delivery system with target-oriented and controlled-release functions is important to increase the effective utilization rate and minimize environmental residue pollution. A temperature-dependent delivery system can modulate the release of pesticide with temperature to improve the efficacy and precision targeting. A series of poly(N-isopropylacrylamide) (PNIPAM)-based nanogels with high deformability and tunable structure were successfully constructed for smart pesticide delivery and effective pest control. A lambda-cyhalothrin (LC)-loaded Pickering emulsion (LC@TNPE) with a stable gel-like network structure was further formed by the temperature-dependent nanogel to encapsule the pesticide. The foliar wettability, photostability, and controlled-release property of LC@TNPE were effectively enhanced compared to the commercial formulation because of the encapsulation and stabilization of nanogel. The release rate of LC positively correlated with temperature changes and thereby adapted to the trend of pest population increase at higher temperature. The LC@TNPE displayed improved control efficacy on multiple target pests including Plutella xylostella, Aphis gossypii, and Pieris rapae compared with the commercial suspension concentrate and microcapsule suspension, and it showed marked efficacy to control Pieris rapae for an extended duration even at a 40% reduced dosage. Furthermore, the safety was evaluated systematically on cells in vitro and with a nontarget organism. Studies confirmed that the system was relatively safe for HepG2 cells and aquatic organism zebrafish. This research provides an insight into creating an efficient and environmentally friendly pesticide nanoformulation for sustainable agriculture production.


Asunto(s)
Plaguicidas , Animales , Nanogeles , Temperatura , Preparaciones de Acción Retardada , Pez Cebra
15.
Int J Biol Macromol ; 223(Pt A): 231-239, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36347371

RESUMEN

Lipopolysaccharide (LPS) poses a considerable threat to food safety and human health. A colorimetric assay for LPS detection based on LPS binding aptamer (LBA) and SYBR Green I (SG) mediated aggregation of gold nanoparticles (AuNPs) was established. In the absence of LPS, the LBA was absorbed onto the AuNPs surface which prevented SG-induced aggregation of AuNPs, and the sensing system exhibited red color. When LPS was added, it interacted with the LBA, forming a complex. At higher LPS concentration, many LBAs were exhausted resulting in SG-induced aggregation of AuNPs, and color change from red to blue. The range of colorimetric detection of LPS was linear in 0-12 EU/mL, with a limit of detection of 0.1698 EU/mL. Spiked LPS in real samples and interfering substances were also identified. This assay ingeniously using the fluorescent dye SG as an effective trigger of AuNPs aggregation, is rapid and facile than most of those earlier reported LBA-based LPS assays, and there is potential to be modified to construct assays for other targets.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Oro/química , Colorimetría/métodos , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , Lipopolisacáridos , Técnicas Biosensibles/métodos
16.
Molecules ; 27(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36296415

RESUMEN

Dissolved oxygen (DO) is an key factor for lipopeptide fermentation. To better understand the link between oxygen supply and lipopeptide productivity in Bacillus velezensis CMT-6, the mechanism of DO on the synthesis of antimicrobial lipopeptides by Bacillus velezensis CMT-6 was examined. The production of surfactin and iturin of CMT-6 was detected by liquid chromatography-mass spectrometer (LC-MS) under different DO conditions and transcriptome analysis was performed. At 100 and 200 rpm, the lipopeptides productions were 2753.62 mg/L and 3452.90 mg/L, respectively. There was no significant change in the yield of iturin but that of surfactin increased by 64.14%. Transcriptome analysis revealed that the enriched differential genes were concentrated in the GO term of oxidation-reduction process. The marked enrichment of the lipopeptides synthesis pathway, including microbial metabolism in diverse environments and carbon metabolism in the two-component system, were observed. More importantly, the expression levels of the four surfactin synthetase genes increased at higher DO, however, the iturin synthetase gene expression did not. Furthermore, modular surfactin synthetase was overexpressed (between 9- and 49-fold) at 200 rpm but not at 100 rpm, which is suggestive of efficient surfactin assembly resulting in surfactin overproduction. This study provides a theoretical basis for constructing engineering strains with high lipopeptide production to adapt to different DO.


Asunto(s)
Antiinfecciosos , Lipopéptidos , Lipopéptidos/genética , Lipopéptidos/metabolismo , Cromatografía Liquida , Oxígeno , Péptidos Cíclicos/metabolismo , Espectrometría de Masas en Tándem , Perfilación de la Expresión Génica , Carbono
17.
Int J Biol Macromol ; 221: 1251-1258, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36070820

RESUMEN

Fungicide-resistant Fusarium has become a threaten to wheat production. Novel fungicide formulations can improve the efficacy of active ingredient and minimize the emergence of resistance. Encapsulation of fungicides in biodegradable carriers, especially, in polysaccharide, is a feasible approach to develop environment-friendly and efficient formulation. This study focused on the synthesis of ethyl cellulose-based phenamacril nano-delivery system by combining emulsion-solvent evaporation and high-pressure homogenization technology to improve the control of fusarium head blight in wheat. Emulsifier 125 and Tersperse 2500 were screened from eleven commonly used surfactants. Emulsifier 125 and Tersperse 2500 in a ratio of 2:1 and phenamacril nanocapsules with the mean particle size of 152.5 ± 1.3 nm were prepared. These showed excellent storage stability and wettability on crop leaves. A bioassay comparing the nanocapsules with a commercial preparation against Fusarium graminearum showed significantly improved biological activity. This formulation could be used to effectively not only to control fusarium head blight but also delay the occurrence of resistance.


Asunto(s)
Fungicidas Industriales , Fusarium , Nanocápsulas , Cianoacrilatos , Triticum , Enfermedades de las Plantas
18.
J Therm Biol ; 108: 103289, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36031210

RESUMEN

Heat stress (HS)-induced intestinal epithelial cell apoptosis may play a pivotal role in intestinal barrier dysfunction in animals. However, the underlying molecular mechanism by which HS induces apoptosis in intestinal epithelial cells is still poorly understood. Herein, a eukaryotic expression vector for an HSP70 gene was constructed and transfected into intestinal porcine epithelial cells (IPEC-J2). Afterward, functional proteomics approaches followed by liquid-chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify interacting proteins. Analysis of HSP70 transfected IPEC-J2 cells revealed 246 differentially expressed proteins (DEPs), and functional annotation indicated that most DEPs were primarily related to ECM-receptor interaction, focal adhesion, and apoptosis. Furtherly, the apoptosis rate and expression levels of apoptosis-related proteins in HSP70 transfected IPEC-J2 cells were detected, we found that the expression of caspase-3, PARP, and Bax were increased, but Bcl-2 were decreased in transfected cells. Lastly, an in vitro and in vivo heat stress model were established to explore the role of HSP70 in intestinal epithelia cell apoptosis. The results of in vitrol study showed that HS-induced cellular apoptosis and increases of caspase-3, PARP, and Bax, but decreased of Bcl-2 in IPEC-J2 cells. In vivo study, the cell apoptosis were induced significantly in the duodenum, cecum, and colon of heat stressed pigs, and upregulation of HSP70 was also detected in colon tissues. Therefore, it has been shown that HSP70 plays a crucial role in heat stress-induced apoptosis and may provide new insights into the molecular mechanisms of epithelial cell apoptosis induced by heat stress in pigs.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Proteómica , Animales , Apoptosis , Caspasa 3 , Línea Celular , Cromatografía Liquida , Células Epiteliales , Respuesta al Choque Térmico , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteínas Proto-Oncogénicas c-bcl-2 , Porcinos , Espectrometría de Masas en Tándem , Proteína X Asociada a bcl-2
19.
Foods ; 11(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35804754

RESUMEN

The present study focused on the determination of color, flavor, taste, and volatile organic compounds (VOCs) changes of shrimp paste fermented for 1, 2, 3, and 8 years by E-nose, E-tongue, and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). During fermentation, the color of shrimp paste turned dark brown with decreases in L*, a*, and b* values. Inorganic sulfide odor was dominant in all fermented samples. The umami, richness, and aftertaste-B reached a maximum in year 3 of fermentation. A total of 182 volatiles, including long-chain alkanes, esters, aldehydes, olefins, ketones, acids, furans, and pyrazines, were detected. Sixteen VOCs including dimethyl disulfide, methional, trimethyl-pyrazine, (E,E)-2,4-heptadienal, benzeneacetaldehyde were selected as flavor markers. Correlation analysis showed that 94 VOCs were related to saltiness while 40, 17, 21, 22, and 24 VOCs contributed to richness, umami, aftertase-B, sourness, and bitterness, respectively. These novel data may help in optimizing fermentation duration to achieve target flavor indicators in opossum shrimp paste production.

20.
Animals (Basel) ; 12(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35405897

RESUMEN

Immune stress markedly affects the immune function and growth performance of livestock, including poultry, resulting in financial loss to farmers. It can lead to decreased feed intake, reduced growth, and intestinal disorders. Studies have shown that pathogen-induced immune stress is mostly related to TLR4-related inflammatory signal pathway activation, excessive inflammatory cytokine release, oxidative stress, hormonal disorders, cell apoptosis, and intestinal microbial disorders. This paper reviews the occurrence of immune stress in livestock, its impact on immune function and growth performance, and strategies for immune stress prevention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA