Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081236

RESUMEN

We introduce a new stress dilatometer with exactly the same size and mass as the world's smallest miniature capacitance dilatometer (height × width × depth = 15 × 14 × 15 mm3, mass: 12 g). To develop this new device, only a single part of the most recently developed mini-dilatometer, the so-called "body," needs to be replaced. Therefore, the new mini-dilatometer with an interchangeable body can be used for high-resolution measurements of thermal expansion and magnetostriction with and without large stress. We also report two novel applications of both mini-dilatometer cell types. Our new setup was installed for the first time in a cryogen-free system (PPMS DynaCool). The first new setup allows the rotation of both dilatometers in situ at any angle between -90° ≥ µ ≥ +90° in the temperature range from 320 to 1.8 K. We also installed our mini-cells in a dilution refrigerator insert of a PPMS DynaCool, in which dilatometric measurements are now possible in the temperature range from 4 to 0.06 K. Because of the limited sample space, such measurements could not be performed so far. For both new applications, we can resolve the impressive length changes to 0.01 Å.

2.
Nat Commun ; 13(1): 7418, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456570

RESUMEN

The quantum limit (QL) of an electron liquid, realised at strong magnetic fields, has long been proposed to host a wealth of strongly correlated states of matter. Electronic states in the QL are, for example, quasi-one dimensional (1D), which implies perfectly nested Fermi surfaces prone to instabilities. Whereas the QL typically requires unreachably strong magnetic fields, the topological semimetal ZrTe5 has been shown to reach the QL at fields of only a few Tesla. Here, we characterize the QL of ZrTe5 at fields up to 64 T by a combination of electrical-transport and ultrasound measurements. We find that the Zeeman effect in ZrTe5 enables an efficient tuning of the 1D Landau band structure with magnetic field. This results in a Lifshitz transition to a 1D Weyl regime in which perfect charge neutrality can be achieved. Since no instability-driven phase transitions destabilise the 1D electron liquid for the investigated field strengths and temperatures, our analysis establishes ZrTe5 as a thoroughly understood platform for potentially inducing more exotic interaction-driven phases at lower temperatures.

3.
Phys Rev Lett ; 128(23): 237201, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35749184

RESUMEN

Using a combination of neutron scattering, calorimetry, quantum Monte Carlo simulations, and analytic results we uncover confinement effects in depleted, partially magnetized quantum spin ladders. We show that introducing nonmagnetic impurities into magnetized spin ladders leads to the emergence of a new characteristic length L in the otherwise scale-free Tomonaga-Luttinger liquid (serving as the effective low-energy model). This results in universal LT scaling of staggered susceptibilities. Comparison of simulation results with experimental phase diagrams of prototypical spin ladder compounds bis(2,3-dimethylpyridinium)tetrabromocuprate(II) (DIMPY) and bis(piperidinium)tetrabromocuprate(II) (BPCB) yields excellent agreement.

4.
Sci Rep ; 12(1): 2153, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140258

RESUMEN

The quasi-quantized Hall effect (QQHE) is the three-dimensional (3D) counterpart of the integer quantum Hall effect (QHE), exhibited only by two-dimensional (2D) electron systems. It has recently been observed in layered materials, consisting of stacks of weakly coupled 2D platelets that are yet characterized by a 3D anisotropic Fermi surface. However, it is predicted that the quasi-quantized 3D version of the 2D QHE should occur in a much broader class of bulk materials, regardless of the underlying crystal structure. Here, we compare the observation of quasi-quantized plateau-like features in the Hall conductivity of the n-type bulk semiconductor InAs with the predictions for the 3D QQHE in presence of parabolic electron bands. InAs takes form of a cubic crystal without any low-dimensional substructure. The onset of the plateau-like feature in the Hall conductivity scales with [Formula: see text] in units of the conductance quantum and is accompanied by a Shubnikov-de Haas minimum in the longitudinal resistivity, consistent wit the results of calculations. This confirms the suggestion that the 3D QQHE may be a generic effect directly observable in materials with small Fermi surfaces, placed in sufficiently strong magnetic fields.

5.
Nat Commun ; 12(1): 3197, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045452

RESUMEN

The quantum Hall effect (QHE) is traditionally considered to be a purely two-dimensional (2D) phenomenon. Recently, however, a three-dimensional (3D) version of the QHE was reported in the Dirac semimetal ZrTe5. It was proposed to arise from a magnetic-field-driven Fermi surface instability, transforming the original 3D electron system into a stack of 2D sheets. Here, we report thermodynamic, spectroscopic, thermoelectric and charge transport measurements on such ZrTe5 samples. The measured properties: magnetization, ultrasound propagation, scanning tunneling spectroscopy, and Raman spectroscopy, show no signatures of a Fermi surface instability, consistent with in-field single crystal X-ray diffraction. Instead, a direct comparison of the experimental data with linear response calculations based on an effective 3D Dirac Hamiltonian suggests that the quasi-quantization of the observed Hall response emerges from the interplay of the intrinsic properties of the ZrTe5 electronic structure and its Dirac-type semi-metallic character.

6.
Nat Commun ; 11(1): 5926, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230118

RESUMEN

Interacting electrons confined to their lowest Landau level in a high magnetic field can form a variety of correlated states, some of which manifest themselves in a Hall effect. Although such states have been predicted to occur in three-dimensional semimetals, a corresponding Hall response has not yet been experimentally observed. Here, we report the observation of an unconventional Hall response in the quantum limit of the bulk semimetal HfTe5, adjacent to the three-dimensional quantum Hall effect of a single electron band at low magnetic fields. The additional plateau-like feature in the Hall conductivity of the lowest Landau level is accompanied by a Shubnikov-de Haas minimum in the longitudinal electrical resistivity and its magnitude relates as 3/5 to the height of the last plateau of the three-dimensional quantum Hall effect. Our findings are consistent with strong electron-electron interactions, stabilizing an unconventional variant of the Hall effect in a three-dimensional material in the quantum limit.

7.
Nature ; 582(7810): E1, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32494072

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nature ; 575(7782): 315-319, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31590178

RESUMEN

An axion insulator is a correlated topological phase, which is predicted to arise from the formation of a charge-density wave in a Weyl semimetal1,2-that is, a material in which electrons behave as massless chiral fermions. The accompanying sliding mode in the charge-density-wave phase-the phason-is an axion3,4 and is expected to cause anomalous magnetoelectric transport effects. However, this axionic charge-density wave has not yet been experimentally detected. Here we report the observation of a large positive contribution to the magnetoconductance in the sliding mode of the charge-density-wave Weyl semimetal (TaSe4)2I for collinear electric and magnetic fields. The positive contribution to the magnetoconductance originates from the anomalous axionic contribution of the chiral anomaly to the phason current, and is locked to the parallel alignment of the electric and magnetic fields. By rotating the magnetic field, we show that the angular dependence of the magnetoconductance is consistent with the anomalous transport of an axionic charge-density wave. Our results show that it is possible to find experimental evidence for axions in strongly correlated topological condensed matter systems, which have so far been elusive in any other context.

9.
Nat Commun ; 9(1): 4093, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30291248

RESUMEN

In stark contrast to ordinary metals, in materials in which electrons strongly interact with each other or with phonons, electron transport is thought to resemble the flow of viscous fluids. Despite their differences, it is predicted that transport in both conventional and correlated materials is fundamentally limited by the uncertainty principle applied to energy dissipation. Here we report the observation of experimental signatures of hydrodynamic electron flow in the Weyl semimetal tungsten diphosphide. Using thermal and magneto-electric transport experiments, we find indications of the transition from a conventional metallic state at higher temperatures to a hydrodynamic electron fluid below 20 K. The hydrodynamic regime is characterized by a viscosity-induced dependence of the electrical resistivity on the sample width and by a strong violation of the Wiedemann-Franz law. Following the uncertainty principle, both electrical and thermal transport are bound by the quantum indeterminacy, independent of the underlying transport regime.

10.
Nanoscale ; 9(9): 3169-3179, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28221383

RESUMEN

The Seebeck coefficient and electrical resistance of Bi1-xSbx nanowire arrays electrodeposited in etched ion-track membranes have been investigated as a function of wire diameter (40-750 nm) and composition (0 ≤ x ≤ 1). The experimental data reveal a non-monotonic dependence between thermopower and wire diameter for three different compositions. Thus, the thermopower values decrease with decreasing wire diameter, exhibiting a minimum around ∼60 nm. This non-monotonic dependence of the Seebeck coefficient is attributed to the interplay of surface and bulk states. On the one hand, the metallic properties of the surface states can contribute to decreasing the thermopower of the nanostructure with increasing surface-to-volume ratio. On the other hand, for wires thinner than ∼60 nm, the relative increase of the thermopower can be tentatively attributed to the presence of quantum-size effects on both surface and bulk states. These measurements contribute to a better understanding of the interplay between bulk and surface states in nanostructures, and indicate that the decrease of Seebeck coefficient with decreasing diameter caused by the presence of surfaces states can possibly be overcome for even thinner nanowires.

11.
Nanotechnology ; 27(34): 345707, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27454574

RESUMEN

Nickel-rich NiFe thin films (Ni92Fe8, Ni89Fe11 and Ni83Fe17) were prepared by combining atomic layer deposition (ALD) with a subsequent thermal reduction process. In order to obtain Ni x Fe1-x O y films, one ALD supercycle was performed according to the following sequence: m NiCp2/O3, with m = 1, 2 or 3, followed by one FeCp2/O3 cycle. The supercycle was repeated n times. The thermal reduction process in hydrogen atmosphere was investigated by in situ x-ray diffraction studies as a function of temperature. The metallic nickel iron alloy thin films were investigated and characterized with respect to crystallinity, morphology, resistivity, and magnetism. As proof-of-concept magnetic properties of an array of Ni83Fe17, close to the perfect Permalloy stoichiometry, nanotubes and an isolated tube were investigated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...