Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775859

RESUMEN

PURPOSE: The genetic intratumoral heterogeneity observed in human osteosarcomas (OS) poses challenges for drug development and the study of cell fate, plasticity, and differentiation, processes linked to tumor grade, cell metastasis, and survival. EXPERIMENTAL DESIGN: To pinpoint errors in OS differentiation, we transcriptionally profiled 31,527 cells from a tissue-engineered model that directsMSCs toward adipogenic and osteoblastic fates. Incorporating pre-existing chondrocyte data, we applied trajectory analysis and non-negative matrix factorization (NMF) to generate the first human mesenchymal differentiation atlas. RESULTS: This 'roadmap' served as a reference to delineate the cellular composition of morphologically complex OS tumors and quantify each cell's lineage commitment. Projecting a bulk RNA-seq OS dataset onto this roadmap unveiled a correlation between a stem-like transcriptomic phenotype and poorer survival outcomes. CONCLUSIONS: Our study quantifies OS differentiation and lineage, a prerequisite to better understanding lineage-specific differentiation bottlenecks that might someday be targeted therapeutically.

2.
Cell Mol Life Sci ; 81(1): 21, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38196006

RESUMEN

BCL6 translocation is one of the most common chromosomal translocations in cancer and results in its enhanced expression in germinal center B cells. It involves the fusion of BCL6 with any of its twenty-six Ig and non-Ig translocation partners associated with diffuse large B cell lymphoma (DLBCL). Despite being discovered long back, the mechanism of BCL6 fragility is largely unknown. Analysis of the translocation breakpoints in 5' UTR of BCL6 reveals the clustering of most of the breakpoints around a region termed Cluster II. In silico analysis of the breakpoint cluster sequence identified sequence motifs that could potentially fold into non-B DNA. Results revealed that the Cluster II sequence folded into overlapping hairpin structures and identified sequences that undergo base pairing at the stem region. Further, the formation of cruciform DNA blocked DNA replication. The sodium bisulfite modification assay revealed the single-strandedness of the region corresponding to hairpin DNA in both strands of the genome. Further, we report the formation of intramolecular parallel G4 and triplex DNA, at Cluster II. Taken together, our studies reveal that multiple non-canonical DNA structures exist at the BCL6 cluster II breakpoint region and contribute to the fragility leading to BCL6 translocation in DLBCL patients.


Asunto(s)
Linfoma de Células B Grandes Difuso , Translocación Genética , Humanos , Translocación Genética/genética , Reordenamiento Génico , Linfoma de Células B Grandes Difuso/genética , Linfocitos B , Regiones no Traducidas 5' , ADN , Proteínas Proto-Oncogénicas c-bcl-6/genética
3.
J Biol Chem ; 299(12): 105431, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926284

RESUMEN

t(8;14) translocation is the hallmark of Burkitt's lymphoma and results in c-MYC deregulation. During the translocation, c-MYC gene on chromosome 8 gets juxtaposed to the Ig switch regions on chromosome 14. Although the promoter of c-MYC has been investigated for its mechanism of fragility, little is known about other c-MYC breakpoint regions. We have analyzed the translocation break points at the exon 1/intron 1 of c-MYC locus from patients with Burkitt's lymphoma. Results showed that the breakpoint region, when present on a plasmid, could fold into an R-loop confirmation in a transcription-dependent manner. Sodium bisulfite modification assay revealed significant single-strandedness on chromosomal DNA of Burkitt's lymphoma cell line, Raji, and normal lymphocytes, revealing distinct R-loops covering up to 100 bp region. Besides, ChIP-DRIP analysis reveals that the R-loop antibody can bind to the breakpoint region. Further, we show the formation of stable parallel intramolecular G-quadruplex on non-template strand of the genome. Finally, incubation of purified AID in vitro or overexpression of AID within the cells led to enhanced mutation frequency at the c-MYC breakpoint region. Interestingly, anti-γH2AX can bind to DSBs generated at the c-MYC breakpoint region within the cells. The formation of R-loop and G-quadruplex was found to be mutually exclusive. Therefore, our results suggest that AID can bind to the single-stranded region of the R-loop and G4 DNA, leading to the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, leading to double-strand break, which could culminate in t(8;14) chromosomal translocation.


Asunto(s)
Linfoma de Burkitt , G-Cuádruplex , Humanos , Linfoma de Burkitt/genética , Linfoma de Burkitt/patología , ADN , Genes myc , Estructuras R-Loop , Translocación Genética
4.
J Immunol ; 211(7): 1067-1072, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37722095

RESUMEN

Osteosarcoma is a primary malignant bone tumor. Effective chemotherapy regimens for refractory disease are scarce, accounting for no improvement in survival. Immune-based cell therapies have emerged as novel alternatives. However, advancements with these therapies have been seen mostly when immune cells are armed to target specific tumor Ags. Recent studies identified cluster of differentiation 70 (CD70) as a promising target to osteosarcoma particularly because CD70 is highly expressed in osteosarcoma lung metastases (Pahl et al. 2015. Cancer Cell Int. 15: 31), and its overexpression by tumors has been correlated with immune evasion and tumor proliferation (Yang et al. 2007. Blood 110: 2537-2544). However, the limited knowledge of the overall CD70 expression within normal tissues and the potential for off-target effect pose several challenges (Flieswasser et al. 2022. J. Exp. Clin. Cancer Res. 41: 12). Nonetheless, CD70-based clinical trials are currently ongoing and are preliminarily showing promising results for patients with osteosarcoma. The present review sheds light on the recent literature on CD70 as it relates to osteosarcoma and highlights the benefits and challenges of targeting this pathway.


Asunto(s)
Neoplasias Óseas , Neoplasias Pulmonares , Osteosarcoma , Humanos , Osteosarcoma/terapia , Tratamiento Basado en Trasplante de Células y Tejidos , Evasión Inmune , Neoplasias Óseas/tratamiento farmacológico , Ligando CD27
5.
BMC Cancer ; 23(1): 488, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37254069

RESUMEN

BACKGROUND: Single-cell RNA-seq has emerged as an innovative technology used to study complex tissues and characterize cell types, states, and lineages at a single-cell level. Classification of bulk tumors by their individual cellular constituents has also created new opportunities to generate single-cell atlases for many organs, cancers, and developmental models. Despite the tremendous promise of this technology, recent evidence studying epithelial tissues and diverse carcinomas suggests the methods used for tissue processing, cell disaggregation, and preservation can significantly bias gene expression and alter the observed cell types. To determine whether sarcomas - tumors of mesenchymal origin - are subject to the same technical artifacts, we profiled patient-derived tumor explants (PDXs) propagated from three aggressive subtypes: osteosarcoma (OS), Ewing sarcoma (ES), desmoplastic small round cell tumor (DSRCT). Given the rarity of these sarcoma subtypes, we explored whether single-nuclei RNA-seq from more widely available archival frozen specimens could accurately be identified by gene expression signatures linked to tissue phenotype or pathognomonic fusion proteins. RESULTS: We systematically assessed dissociation methods across different sarcoma subtypes. We compared gene expression from single-cell and single-nucleus RNA-sequencing of 125,831 whole-cells and nuclei from ES, DSRCT, and OS PDXs. We detected warm dissociation artifacts in single-cell samples and gene length bias in single-nucleus samples. Classic sarcoma gene signatures were observed regardless of the dissociation method. In addition, we showed that dissociation method biases could be computationally corrected. CONCLUSIONS: We highlighted transcriptional biases, including warm dissociation and gene-length biases, introduced by the dissociation method for various sarcoma subtypes. This work is the first to characterize how the dissociation methods used for sc/snRNA-seq may affect the interpretation of the molecular features in sarcoma PDXs.


Asunto(s)
Sarcoma de Ewing , Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Transcriptoma , Sarcoma/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología , Análisis de Secuencia de ARN/métodos , RNA-Seq/métodos
6.
Cancers (Basel) ; 14(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077841

RESUMEN

Ceramides are essential sphingolipids that mediate cell death and survival. Low ceramide content in melanoma is one mechanism of drug resistance. Thus, increasing the ceramide content in tumor cells is likely to increase their sensitivity to cytotoxic therapy. Aerobic exercise has been shown to modulate ceramide metabolism in healthy tissue, but the relationship between exercise and ceramide in tumors has not been evaluated. Here, we demonstrate that aerobic exercise causes tumor cell apoptosis and accumulation of pro-apoptotic ceramides in B16F10 but not BP melanoma models using mice. B16F10 tumor-bearing mice were treated with two weeks of moderate treadmill exercise, or were control, unexercised mice. A reverse-phase protein array was used to identify canonical p53 apoptotic signaling as a key pathway upregulated by exercise, and we demonstrate increased apoptosis in tumors from exercised mice. Consistent with this finding, pro-apoptotic C16-ceramide, and the ceramide generating enzyme ceramide synthase 6 (CerS6), were higher in B16F10 tumors from exercised mice, while pro-survival sphingosine kinase 1 (Sphk1) was lower. These data suggest that exercise contributes to B16F10 tumor cell death, possibly by modulating ceramide metabolism toward a pro-apoptotic ceramide/sphingosine-1-phosphate balance. However, these results are not consistent in BP tumors, demonstrating that exercise can have different effects on tumors of different patient or mouse origin with the same diagnosis. This work indicates that exercise might be most effective as a therapeutic adjuvant with therapies that kill tumor cells in a ceramide-dependent manner.

7.
Front Oncol ; 12: 855167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600406

RESUMEN

The RE1 Silencing Transcription Factor (REST) is a major regulator of neurogenesis and brain development. Medulloblastoma (MB) is a pediatric brain cancer characterized by a blockade of neuronal specification. REST gene expression is aberrantly elevated in a subset of MBs that are driven by constitutive activation of sonic hedgehog (SHH) signaling in cerebellar granular progenitor cells (CGNPs), the cells of origin of this subgroup of tumors. To understand its transcriptional deregulation in MBs, we first studied control of Rest gene expression during neuronal differentiation of normal mouse CGNPs. Higher Rest expression was observed in proliferating CGNPs compared to differentiating neurons. Interestingly, two Rest isoforms were expressed in CGNPs, of which only one showed a significant reduction in expression during neurogenesis. In proliferating CGNPs, higher MLL4 and KDM7A activities opposed by the repressive polycomb repressive complex 2 (PRC2) and the G9A/G9A-like protein (GLP) complex function allowed Rest homeostasis. During differentiation, reduction in MLL4 enrichment on chromatin, in conjunction with an increase in PRC2/G9A/GLP/KDM7A activities promoted a decline in Rest expression. These findings suggest a lineage-context specific paradoxical role for KDM7A in the regulation of Rest expression in CGNPs. In human SHH-MBs (SHH-α and SHH-ß) where elevated REST gene expression is associated with poor prognosis, up- or downregulation of KDM7A caused a significant worsening in patient survival. Our studies are the first to implicate KDM7A in REST regulation and in MB biology.

8.
Nat Commun ; 13(1): 588, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35102191

RESUMEN

High-grade diffuse glioma (HGG) is the leading cause of brain tumour death. While the genetic drivers of HGG have been well described, targeting these has thus far had little impact on survival suggesting other mechanisms are at play. Here we interrogate the alternative splicing landscape of pediatric and adult HGG through multi-omic analyses, uncovering an increased splicing burden compared with normal brain. The rate of recurrent alternative splicing in cancer drivers exceeds their mutation rate, a pattern that is recapitulated in pan-cancer analyses, and is associated with worse prognosis in HGG. We investigate potential oncogenicity by interrogating cancer pathways affected by alternative splicing in HGG; spliced cancer drivers include members of the RAS/MAPK pathway. RAS suppressor neurofibromin 1 is differentially spliced to a less active isoform in >80% of HGG downstream from REST upregulation, activating the RAS/MAPK pathway and reducing glioblastoma patient survival. Overall, our results identify non-mutagenic mechanisms by which cancers activate oncogenic pathways which need to accounted for in personalized medicine approaches.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , Oncogenes/genética , Empalme del ARN/genética , Adulto , Empalme Alternativo/genética , Animales , Secuencia de Bases , Sitios de Unión , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Niño , Cromatina/metabolismo , Exones/genética , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias , Glioma/patología , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Mutación/genética , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Represoras/metabolismo , Empalmosomas/genética , Factores de Transcripción/metabolismo , Proteínas ras/metabolismo
11.
Front Cell Dev Biol ; 9: 675599, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34195194

RESUMEN

Autophagy is a highly conserved catabolic process induced under various stress conditions to protect the cell from harm and allow survival in the face of nutrient- or energy-deficient states. Regulation of autophagy is complex, as cells need to adapt to a continuously changing microenvironment. It is well recognized that the AMPK and mTOR signaling pathways are the main regulators of autophagy. However, various other signaling pathways have also been described to regulate the autophagic process. A better understanding of these complex autophagy regulatory mechanisms will allow the discovery of new potential therapeutic targets. Here, we present a brief overview of autophagy and its regulatory pathways with emphasis on the epigenetic control mechanisms.

12.
Int J Radiat Biol ; 97(9): 1166-1180, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34259614

RESUMEN

PURPOSE: DNA, the hereditary material of a human cell generally exists as Watson-Crick base paired double-stranded B-DNA. Studies suggest that DNA can also exist in non-B forms, such as four stranded G-quadruplexes (G4 DNA). Recently, our studies revealed that the regions of DNA that can fold into G-quadruplex structures are less sensitive to ionizing radiation (IR) compared to B-DNA. Importantly, we reported that the planar G-quartet of a G4 structure is shielded from radiation induced DNA breaks, while the single- and double-stranded DNA regions remained susceptible. Thus, in the present study, we investigate whether telomeric repeat DNA present at the end of telomere, known to fold into G4 DNA can protect from radiation induced damages including strand breaks, oxidation of purines and bulky adduct formation on DNA. MATERIALS AND METHODS: For plasmid irradiation assay, plasmids containing human telomeric repeat DNA sequence TTAGGG (0.8 kb or 1.8 kb) were irradiated with increasing doses of IR along with appropriate control plasmids and products were resolved on 1% agarose gel. Radioprotection was evaluated based on extent of conversion of supercoiled to nicked or linear forms of the DNA following irradiation. Formation of G-quadruplex structure on supercoiled DNA was evaluated based on circular dichroism (CD) spectroscopy studies. Cleavage of radiation induced oxidative damage and extent of formation of nicks was further evaluated using base and nucleotide excision repair proteins. RESULTS: Results from CD studies showed that the plasmid DNA harboring human telomeric repeats (TTAGGG) can fold into G-quadruplex DNA structures. Further, results showed that human telomeric repeat sequence when present on a plasmid can protect the plasmid DNA against IR induced DNA strand breaks, unlike control plasmids bearing random DNA sequence. CONCLUSIONS: Human telomeric repeat sequence when present on plasmids can fold into G-quadruplex DNA structures, and can protect the DNA against IR induced DNA strand breaks and oxidative damage. These results in conjunction with our previous studies suggest that telomeric repeat sequence imparts less sensitivity to IR and thus telomeres of chromosomes are protected from radiation.


Asunto(s)
Aductos de ADN/genética , Aductos de ADN/efectos de la radiación , G-Cuádruplex/efectos de la radiación , Rayos gamma/efectos adversos , Estrés Oxidativo/genética , Estrés Oxidativo/efectos de la radiación , Telómero/genética , Secuencia de Bases , Humanos , Telómero/efectos de la radiación
13.
Mol Carcinog ; 60(9): 627-643, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34192388

RESUMEN

Nonhomologous end joining (NHEJ), one of the major DNA double-strand break repair pathways, plays a significant role in cancer cell proliferation and resistance to radio and chemotherapeutic agents. Previously, we had described a small molecule inhibitor, SCR7, which inhibited NHEJ in a DNA Ligase IV dependent manner. Here, we report that SCR7 potentiates the effect of γ-radiation (IR) that induces DNA breaks as intermediates to eradicate cancer cells. Dose fractionation studies revealed that coadministration of SCR7 and IR (0.5 Gy) in mice Dalton's lymphoma (DLA) model led to a significant reduction in mice tumor cell proliferation, which was equivalent to that observed for 2 Gy dose when both solid and liquid tumor models were used. Besides, co-treatment with SCR7 and 1 Gy of IR further improved the efficacy. Notably, there was no significant change in blood parameters, kidney and liver functions upon combinatorial treatment of SCR7 and IR. Further, the co-treatment of SCR7 and IR resulted in a significant increase in unrepaired DSBs within cancer cells compared to either of the agent alone. Anatomy, histology, and other studies in tumor models confirmed the cumulative effects of both agents in activating apoptotic pathways to induce cytotoxicity by modulating DNA damage response and repair pathways. Thus, we report that SCR7 has the potential to reduce the side effects of radiotherapy by lowering its effective dose ex vivo and in mice tumor models, with implications in cancer therapy.


Asunto(s)
Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de la radiación , Pirimidinas/farmacología , Radiación Ionizante , Fármacos Sensibilizantes a Radiaciones/farmacología , Bases de Schiff/farmacología , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , ADN Ligasa (ATP)/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Mol Oncol ; 15(5): 1486-1506, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33469989

RESUMEN

Expression of the RE1-silencing transcription factor (REST), a master regulator of neurogenesis, is elevated in medulloblastoma (MB) tumors. A cell-intrinsic function for REST in MB tumorigenesis is known. However, a role for REST in the regulation of MB tumor microenvironment has not been investigated. Here, we implicate REST in remodeling of the MB vasculature and describe underlying mechanisms. Using RESTTG mice, we demonstrate that elevated REST expression in cerebellar granule cell progenitors, the cells of origin of sonic hedgehog (SHH) MBs, increased vascular growth. This was recapitulated in MB xenograft models and validated by transcriptomic analyses of human MB samples. REST upregulation was associated with enhanced secretion of proangiogenic factors. Surprisingly, a REST-dependent increase in the expression of the proangiogenic transcription factor E26 oncogene homolog 1, and its target gene encoding the vascular endothelial growth factor receptor-1, was observed in MB cells, which coincided with their localization at the tumor vasculature. These observations were confirmed by RNA-Seq and microarray analyses of MB cells and SHH-MB tumors. Thus, our data suggest that REST elevation promotes vascular growth by autocrine and paracrine mechanisms.


Asunto(s)
Neoplasias Cerebelosas/irrigación sanguínea , Meduloblastoma/irrigación sanguínea , Neovascularización Patológica/genética , Proteína Proto-Oncogénica c-ets-1/fisiología , Proteínas Represoras/fisiología , Animales , Proliferación Celular/genética , Células Cultivadas , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Neovascularización Patológica/patología , Microambiente Tumoral/genética
15.
Int J Cancer ; 148(8): 1928-1937, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33152115

RESUMEN

Survival of patients with relapsed/refractory osteosarcoma has not improved in the last 30 years. Several immunotherapeutic approaches have shown benefit in murine osteosarcoma models, including the anti-programmed death-1 (anti-PD-1) and anti-cytotoxic T-lymphocyte antigen-4 (anti-CTLA-4) immune checkpoint inhibitors. Treatment with the T-cell growth factor interleukin-2 (IL-2) has shown some clinical benefit but has limitations due to poor tolerability. Therefore, we evaluated the efficacy of bempegaldesleukin (BEMPEG; NKTR-214), a first-in-class CD122-preferential IL-2 pathway agonist, alone and in combination with anti-PD-1 or anti-CTLA-4 immune checkpoint inhibitors in metastatic and orthotopic murine models of osteosarcoma. Treatment with BEMPEG delayed tumor growth and increased overall survival of mice with K7M2-WT osteosarcoma pulmonary metastases. BEMPEG also inhibited primary tumor growth and metastatic relapse in lungs and bone in the K7M3 orthotopic osteosarcoma mouse model. In addition, it enhanced therapeutic activity of anti-CTLA-4 and anti-PD-1 checkpoint blockade in the DLM8 subcutaneous murine osteosarcoma model. Finally, BEMPEG strongly increased accumulation of intratumoral effector T cells and natural killer cells, but not T-regulatory cells, resulting in improved effector:inhibitory cell ratios. Collectively, these data in multiple murine models of osteosarcoma provide a path toward clinical evaluation of BEMPEG-based regimens in human osteosarcoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Óseas/tratamiento farmacológico , Modelos Animales de Enfermedad , Interleucina-2/análogos & derivados , Osteosarcoma/tratamiento farmacológico , Polietilenglicoles/farmacología , Animales , Neoplasias Óseas/inmunología , Neoplasias Óseas/patología , Línea Celular Tumoral , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Interleucina-2/administración & dosificación , Interleucina-2/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/secundario , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Osteosarcoma/inmunología , Osteosarcoma/patología , Polietilenglicoles/administración & dosificación , Análisis de Supervivencia , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/patología , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología
16.
Biochem J ; 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33245113

RESUMEN

Arginine methylation is a post-translational modification that is implicated in multiple biological functions including transcriptional regulation. The expression of protein arginine methyltransferases (PRMT) has been shown to be upregulated in various cancers. PRMTs have emerged as attractive targets for the development of new cancer therapies. Here, we describe the identification of a natural compound, licochalcone A, as a novel, reversible and selective inhibitor of PRMT6. Since expression of PRMT6 is upregulated in human breast cancers and is associated with oncogenesis, we used the human breast cancer cell line system to study the effect of licochalcone A treatment on PRMT6 activity, cell viability, cell cycle, and apoptosis. We demonstrated that licochalcone A is a non-S-adenosyl L-methionine (SAM) binding site competitive inhibitor of PRMT6. In MCF-7 cells, it inhibited PRMT6-dependent methylation of histone H3 at arginine 2 (H3R2), which resulted in a significant repression of estrogen receptor activity. Licochalcone A exhibited cytotoxicity towards human MCF-7 breast cancer cells, but not MCF-10A human breast epithelial cells, by upregulating p53 expression and blocking cell cycle progression at G2/M, followed by apoptosis. Thus, licochalcone A has potential for further development as a therapeutic agent against breast cancer.

17.
Molecules ; 25(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008036

RESUMEN

PURPOSE: Curcumin is known for its anticancer and migrastatic activity in various cancers, including breast cancer. Newer curcumin derivatives are being explored to overcome limitations of curcumin like low bioavailability, stability, and side effects due to its higher dose. In this study, the synthesis of ST09, a novel curcumin derivative, and its antiproliferative, cytotoxic, and migrastatic properties have been explored both in vitro and in vivo. METHODS: After ST09 synthesis, anticancer activity was studied by performing standard cytotoxicity assays namely, lactate dehydrogenase (LDH) release assay, 3-(4, 5-dimethylthiazol-2-yl)-2-5-diphenyletrazolium bromide (MTT), and trypan blue exclusion assay. Annexin-FITC, cell cycle analysis using flow cytometry, and Western blotting were performed to elucidate cell death mechanisms. The effect on the inhibition of cell migration was studied by transwell migration assay. An EAC (Ehrlich Ascites carcinoma) induced mouse tumor model was used to study the effect of ST09 on tumor regression. Drug toxicity was measured using aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and flow-cytometry based lymphocyte count. Histological analysis was performed for assessment of any tissue injury post ST09 treatment. RESULTS: ST09 shows an approximate 100-fold higher potency than curcumin, its parent compound, on breast tumor cell lines MCF-7 and MDA-MB231. ST09 arrests the cell cycle in a cell type-specific manner and induces an intrinsic apoptotic pathway both in vitro and in vivo. ST09 inhibits migration by downregulating matrix metalloprotease 1,2 (MMP1,2) and Vimentin. In vivo, ST09 administration led to decreased tumor volume in a mouse allograft model by boosting immunity with no significant drug toxicity. CONCLUSION: ST09 exhibits antiproliferative and cytotoxic activity at nanomolar concentrations. It induces cell death by activation of the intrinsic pathway of apoptosis both in vitro and in vivo. It also inhibits migration and invasion. This study provides evidence that ST09 can potentially be developed as a novel antitumor drug candidate for highly metastatic and aggressive breast cancer.


Asunto(s)
Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Movimiento Celular/efectos de los fármacos , Curcumina/análogos & derivados , Curcumina/farmacología , Progresión de la Enfermedad , Neoplasias Mamarias Animales/patología , Aloinjertos/efectos de los fármacos , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Curcumina/química , Modelos Animales de Enfermedad , Femenino , Humanos , Concentración 50 Inhibidora , Metaloproteinasas de la Matriz/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Pruebas de Toxicidad
18.
Sci Rep ; 10(1): 15188, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938954

RESUMEN

Small molecule inhibitors targeting BCL2 are explored as anticancer therapeutics. Previously, we have reported identification and characterization of a novel BCL2 inhibitor, Disarib. Disarib induced cancer cell death in a BCL2 dependent manner in different cancer cell lines and mouse tumor models when it was administered intraperitoneally. In the present study, using two syngeneic mouse models, breast adenocarcinoma (EAC) and Dalton's lymphoma (DLA), we show that oral administration of Disarib resulted in significant tumor regression in a concentration dependent manner. Importantly, tumor developed in both female and male mice were equally sensitive to Disarib. Further, we have investigated the toxicity of Disarib in normal cells. Single dose toxicity analysis of Disarib in male and female mice after oral administration revealed no significant variations compared to control group for parameters such as body weight, food and water consumption and behavioural changes which were analysed for the entire period of study. Haematological and histopathological analyses also did not show any significant difference from the control groups. Thus, our results reveal safe use of Disarib as a small molecule inhibitor and provide the foundation for investigation of other preclinical studies.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Indoles/uso terapéutico , Linfoma/tratamiento farmacológico , Glándulas Mamarias Humanas/efectos de los fármacos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Tiadiazoles/uso terapéutico , Administración Oral , Animales , Recuento de Células Sanguíneas , Peso Corporal/efectos de los fármacos , Línea Celular Tumoral , Femenino , Hematopoyesis/efectos de los fármacos , Humanos , Indoles/farmacología , Masculino , Glándulas Mamarias Humanas/patología , Neoplasias Mamarias Experimentales/diagnóstico , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Tiadiazoles/farmacología
19.
J Neurooncol ; 150(1): 35-46, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32816225

RESUMEN

INTRODUCTION: In the last decade, a number of genomic and pharmacological studies have demonstrated the importance of epigenetic dysregulation in medulloblastoma initiation and progression. High throughput approaches including gene expression array, next-generation sequencing (NGS), and methylation profiling have now clearly identified at least four molecular subgroups within medulloblastoma, each with distinct clinical and prognostic characteristics. These studies have clearly shown that despite the overall paucity of mutations, clinically relevant events do occur within the cellular epigenetic machinery. Thus, this review aims to provide an overview of our current understanding of the spectrum of epi-oncogenetic perturbations in medulloblastoma. METHODS: Comprehensive review of epigenetic profiles of different subgroups of medulloblastoma in the context of molecular features. Epigenetic regulation is mediated mainly by DNA methylation, histone modifications and microRNAs (miRNA). Importantly, epigenetic mis-events are reversible and have immense therapeutic potential. CONCLUSION: The widespread epigenetic alterations present in these tumors has generated intense interest in their use as therapeutic targets. We provide an assessment of the progress that has been made towards the development of molecular subtypes-targeted therapies and the current status of clinical trials that have leveraged these recent advances.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , MicroARNs , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/terapia , Metilación de ADN , Epigénesis Genética , Humanos , Meduloblastoma/genética , Meduloblastoma/terapia , MicroARNs/genética
20.
Neuro Oncol ; 22(8): 1214-1225, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32152626

RESUMEN

BACKGROUND: Recurrent pediatric medulloblastoma and ependymoma have a grim prognosis. We report a first-in-human, phase I study of intraventricular infusions of ex vivo expanded autologous natural killer (NK) cells in these tumors, with correlative studies. METHODS: Twelve patients were enrolled, 9 received protocol therapy up to 3 infusions weekly, in escalating doses from 3 × 106 to 3 × 108 NK cells/m2/infusion, for up to 3 cycles. Cerebrospinal fluid (CSF) was obtained for cellular profile, persistence, and phenotypic analysis of NK cells. Radiomic characterization on pretreatment MRI scans was performed in 7 patients, to develop a non-invasive imaging-based signature. RESULTS: Primary objectives of NK cell harvest, expansion, release, and safety of 112 intraventricular infusions of NK cells were achieved in all 9 patients. There were no dose-limiting toxicities. All patients showed progressive disease (PD), except 1 patient showed stable disease for one month at end of study follow-up. Another patient had transient radiographic response of the intraventricular tumor after 5 infusions of NK cell before progressing to PD. At higher dose levels, NK cells increased in the CSF during treatment with repetitive infusions (mean 11.6-fold). Frequent infusions of NK cells resulted in CSF pleocytosis. Radiomic signatures were profiled in 7 patients, evaluating ability to predict upfront radiographic changes, although they did not attain statistical significance. CONCLUSIONS: This study demonstrated feasibility of production and safety of intraventricular infusions of autologous NK cells. These findings support further investigation of locoregional NK cell infusions in children with brain malignancies.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Ependimoma , Células Asesinas Naturales/trasplante , Meduloblastoma , Adolescente , Neoplasias Encefálicas/líquido cefalorraquídeo , Neoplasias Encefálicas/terapia , Neoplasias Cerebelosas/líquido cefalorraquídeo , Neoplasias Cerebelosas/terapia , Niño , Ependimoma/líquido cefalorraquídeo , Ependimoma/tratamiento farmacológico , Femenino , Humanos , Infusiones Intraventriculares , Células Asesinas Naturales/inmunología , Masculino , Meduloblastoma/líquido cefalorraquídeo , Meduloblastoma/terapia , Recurrencia Local de Neoplasia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA