Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Xray Sci Technol ; 32(3): 623-649, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38607728

RESUMEN

BACKGROUND: COVID-19 needs to be diagnosed and staged to be treated accurately. However, prior studies' diagnostic and staging abilities for COVID-19 infection needed to be improved. Therefore, new deep learning-based approaches are required to aid radiologists in detecting and quantifying COVID-19-related lung infections. OBJECTIVE: To develop deep learning-based models to classify and quantify COVID-19-related lung infections. METHODS: Initially, Dual Decoder Attention-based Semantic Segmentation Networks (DDA-SSNets) such as Dual Decoder Attention-UNet (DDA-UNet) and Dual Decoder Attention-SegNet (DDA-SegNet) are proposed to facilitate the dual segmentation tasks such as lung lobes and infection segmentation in chest X-ray (CXR) images. The lung lobe and infection segmentations are mapped to grade the severity of COVID-19 infection in both the lungs of CXRs. Later, a Genetic algorithm-based Deep Convolutional Neural Network classifier with the optimum number of layers, namely GADCNet, is proposed to classify the extracted regions of interest (ROI) from the CXR lung lobes into COVID-19 and non-COVID-19. RESULTS: The DDA-SegNet shows better segmentation with an average BCSSDC of 99.53% and 99.97% for lung lobes and infection segmentations, respectively, compared with DDA-UNet with an average BCSSDC of 99.14% and 99.92%. The proposed DDA-SegNet with GADCNet classifier offered excellent classification results with an average BCCAC of 99.98%, followed by the GADCNet with DDA-UNet with an average BCCAC of 99.92% after extensive testing and analysis. CONCLUSIONS: The results show that the proposed DDA-SegNet has superior performance in the segmentation of lung lobes and COVID-19-infected regions in CXRs, along with improved severity grading compared to the DDA-UNet and improved accuracy of the GADCNet classifier in classifying the CXRs into COVID-19, and non-COVID-19.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Pulmón , Radiografía Torácica , SARS-CoV-2 , COVID-19/diagnóstico por imagen , Humanos , Pulmón/diagnóstico por imagen , Radiografía Torácica/métodos , Neumonía Viral/diagnóstico por imagen , Algoritmos , Infecciones por Coronavirus/diagnóstico por imagen , Pandemias , Redes Neurales de la Computación , Betacoronavirus , Semántica
2.
Biomed Signal Process Control ; 85: 104857, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36968651

RESUMEN

Coronavirus disease (COVID-19) has infected over 603 million confirmed cases as of September 2022, and its rapid spread has raised concerns worldwide. More than 6.4 million fatalities in confirmed patients have been reported. According to reports, the COVID-19 virus causes lung damage and rapidly mutates before the patient receives any diagnosis-specific medicine. Daily increasing COVID-19 cases and the limited number of diagnosis tool kits encourage the use of deep learning (DL) models to assist health care practitioners using chest X-ray (CXR) images. The CXR is a low radiation radiography tool available in hospitals to diagnose COVID-19 and combat this spread. We propose a Multi-Textural Multi-Class (MTMC) UNet-based Recurrent Residual Convolutional Neural Network (MTMC-UR2CNet) and MTMC-UR2CNet with attention mechanism (MTMC-AUR2CNet) for multi-class lung lobe segmentation of CXR images. The lung lobe segmentation output of MTMC-UR2CNet and MTMC-AUR2CNet are mapped individually with their input CXRs to generate the region of interest (ROI). The multi-textural features are extracted from the ROI of each proposed MTMC network. The extracted multi-textural features from ROI are fused and are trained to the Whale optimization algorithm (WOA) based DeepCNN classifier on classifying the CXR images into normal (healthy), COVID-19, viral pneumonia, and lung opacity. The experimental result shows that the MTMC-AUR2CNet has superior performance in multi-class lung lobe segmentation of CXR images with an accuracy of 99.47%, followed by MTMC-UR2CNet with an accuracy of 98.39%. Also, MTMC-AUR2CNet improves the multi-textural multi-class classification accuracy of the WOA-based DeepCNN classifier to 97.60% compared to MTMC-UR2CNet.

3.
J Xray Sci Technol ; 31(3): 483-509, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36872839

RESUMEN

BACKGROUND: COVID-19 is the most dangerous virus, and its accurate diagnosis saves lives and slows its spread. However, COVID-19 diagnosis takes time and requires trained professionals. Therefore, developing a deep learning (DL) model on low-radiated imaging modalities like chest X-rays (CXRs) is needed. OBJECTIVE: The existing DL models failed to diagnose COVID-19 and other lung diseases accurately. This study implements a multi-class CXR segmentation and classification network (MCSC-Net) to detect COVID-19 using CXR images. METHODS: Initially, a hybrid median bilateral filter (HMBF) is applied to CXR images to reduce image noise and enhance the COVID-19 infected regions. Then, a skip connection-based residual network-50 (SC-ResNet50) is used to segment (localize) COVID-19 regions. The features from CXRs are further extracted using a robust feature neural network (RFNN). Since the initial features contain joint COVID-19, normal, pneumonia bacterial, and viral properties, the conventional methods fail to separate the class of each disease-based feature. To extract the distinct features of each class, RFNN includes a disease-specific feature separate attention mechanism (DSFSAM). Furthermore, the hunting nature of the Hybrid whale optimization algorithm (HWOA) is used to select the best features in each class. Finally, the deep-Q-neural network (DQNN) classifies CXRs into multiple disease classes. RESULTS: The proposed MCSC-Net shows the enhanced accuracy of 99.09% for 2-class, 99.16% for 3-class, and 99.25% for 4-class classification of CXR images compared to other state-of-art approaches. CONCLUSION: The proposed MCSC-Net enables to conduct multi-class segmentation and classification tasks applying to CXR images with high accuracy. Thus, together with gold-standard clinical and laboratory tests, this new method is promising to be used in future clinical practice to evaluate patients.


Asunto(s)
COVID-19 , Ballenas , Humanos , Animales , Prueba de COVID-19 , COVID-19/diagnóstico por imagen , Redes Neurales de la Computación , Algoritmos
4.
Concurr Comput ; 34(22): e7157, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36246408

RESUMEN

The corona virus disease 2019 (COVID-19) pandemic has a severe influence on population health all over the world. Various methods are developed for detecting the COVID-19, but the process of diagnosing this problem from radiology and radiography images is one of the effective procedures for diagnosing the affected patients. Therefore, a robust and effective multi-local texture features (MLTF)-based feature extraction approach and Improved Weed Sea-based DeepNet (IWS-based DeepNet) approach is proposed for detecting the COVID-19 at an earlier stage. The developed IWS-based DeepNet is developed for detecting COVID-19to optimize the structure of the Deep Convolutional Neural Network (Deep CNN). The IWS is devised by incorporating the Improved Invasive Weed Optimization (IIWO) and Sea Lion Optimization (SLnO), respectively. The noises present in the input chest x-ray (CXR) image are discarded using Region of Interest (RoI) extraction by adaptive thresholding technique. For feature extraction, the proposed MLFT is newly developed by considering various texture features for extracting the best features. Finally, the COVID-19 detection is performed using the proposed IWS-based DeepNet. Furthermore, the proposed technique achieved effective performance in terms of True Positive Rate (TPR), True Negative Rate (TNR), and accuracy with the maximum values of 0.933%, 0.890%, and 0.919%.

5.
Biomed Signal Process Control ; 77: 103860, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35692695

RESUMEN

The coronavirus disease 2019 (COVID-19) epidemic had a significant impact on daily life in many nations and global public health. COVID's quick spread has become one of the biggest disruptive calamities in the world. In the fight against COVID-19, it's critical to keep a close eye on the initial stage of infection in patients. Furthermore, early COVID-19 discovery by precise diagnosis, especially in patients with no evident symptoms, may reduce the patient's death rate and can stop the spread of COVID-19. When compared to CT images, chest X-ray (CXR) images are now widely employed for COVID-19 diagnosis since CXR images contain more robust features of the lung. Furthermore, radiologists can easily diagnose CXR images because of its operating speed and low cost, and it is promising for emergency situations and therapy. This work proposes a tri-stage CXR image based COVID-19 classification model using deep learning convolutional neural networks (DLCNN) with an optimal feature selection technique named as enhanced grey-wolf optimizer with genetic algorithm (EGWO-GA), which is denoted as CXGNet. The proposed CXGNet is implemented as multiple classes, such as 4-class, 3-class, and 2-class models based on the diseases. Extensive simulation outcome discloses the superiority of the proposed CXGNet model with enhanced classification accuracy of 94.00% for the 4-class model, 97.05% of accuracy for the 3-class model, and 100% accuracy for the 2-class model as compared to conventional methods.

6.
J Xray Sci Technol ; 30(3): 491-512, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213339

RESUMEN

BACKGROUND: Although detection of COVID-19 from chest X-ray radiography (CXR) images is faster than PCR sputum testing, the accuracy of detecting COVID-19 from CXR images is lacking in the existing deep learning models. OBJECTIVE: This study aims to classify COVID-19 and normal patients from CXR images using semantic segmentation networks for detecting and labeling COVID-19 infected lung lobes in CXR images. METHODS: For semantically segmenting infected lung lobes in CXR images for COVID-19 early detection, three structurally different deep learning (DL) networks such as SegNet, U-Net and hybrid CNN with SegNet plus U-Net, are proposed and investigated. Further, the optimized CXR image semantic segmentation networks such as GWO SegNet, GWO U-Net, and GWO hybrid CNN are developed with the grey wolf optimization (GWO) algorithm. The proposed DL networks are trained, tested, and validated without and with optimization on the openly available dataset that contains 2,572 COVID-19 CXR images including 2,174 training images and 398 testing images. The DL networks and their GWO optimized networks are also compared with other state-of-the-art models used to detect COVID-19 CXR images. RESULTS: All optimized CXR image semantic segmentation networks for COVID-19 image detection developed in this study achieved detection accuracy higher than 92%. The result shows the superiority of optimized SegNet in segmenting COVID-19 infected lung lobes and classifying with an accuracy of 98.08% compared to optimized U-Net and hybrid CNN. CONCLUSION: The optimized DL networks has potential to be utilised to more objectively and accurately identify COVID-19 disease using semantic segmentation of COVID-19 CXR images of the lungs.


Asunto(s)
COVID-19 , Aprendizaje Profundo , COVID-19/diagnóstico por imagen , Humanos , Radiografía , SARS-CoV-2 , Semántica , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...