Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 23(4): 649-62, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27076078

RESUMEN

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy associated with Notch pathway mutations. While both normal activated and leukemic T cells can utilize aerobic glycolysis to support proliferation, it is unclear to what extent these cell populations are metabolically similar and if differences reveal T-ALL vulnerabilities. Here we show that aerobic glycolysis is surprisingly less active in T-ALL cells than proliferating normal T cells and that T-ALL cells are metabolically distinct. Oncogenic Notch promoted glycolysis but also induced metabolic stress that activated 5' AMP-activated kinase (AMPK). Unlike stimulated T cells, AMPK actively restrained aerobic glycolysis in T-ALL cells through inhibition of mTORC1 while promoting oxidative metabolism and mitochondrial Complex I activity. Importantly, AMPK deficiency or inhibition of Complex I led to T-ALL cell death and reduced disease burden. Thus, AMPK simultaneously inhibits anabolic growth signaling and is essential to promote mitochondrial pathways that mitigate metabolic stress and apoptosis in T-ALL.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucólisis , Mitocondrias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Mitocondrias/patología , Complejos Multiproteicos/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Receptores Notch/metabolismo , Transducción de Señal , Estrés Fisiológico , Linfocitos T/metabolismo , Linfocitos T/patología , Serina-Treonina Quinasas TOR/metabolismo
2.
Cell Metab ; 22(6): 1009-19, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26387865

RESUMEN

The MYC oncogene encodes MYC, a transcription factor that binds the genome through sites termed E-boxes (5'-CACGTG-3'), which are identical to the binding sites of the heterodimeric CLOCK-BMAL1 master circadian transcription factor. Hence, we hypothesized that ectopic MYC expression perturbs the clock by deregulating E-box-driven components of the circadian network in cancer cells. We report here that deregulated expression of MYC or N-MYC disrupts the molecular clock in vitro by directly inducing REV-ERBα to dampen expression and oscillation of BMAL1, and this could be rescued by knockdown of REV-ERB. REV-ERBα expression predicts poor clinical outcome for N-MYC-driven human neuroblastomas that have diminished BMAL1 expression, and re-expression of ectopic BMAL1 in neuroblastoma cell lines suppresses their clonogenicity. Further, ectopic MYC profoundly alters oscillation of glucose metabolism and perturbs glutaminolysis. Our results demonstrate an unsuspected link between oncogenic transformation and circadian and metabolic dysrhythmia, which we surmise to be advantageous for cancer.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción ARNTL/química , Factores de Transcripción ARNTL/genética , Secuencia de Bases , Sitios de Unión , Proteínas CLOCK/química , Proteínas CLOCK/genética , Línea Celular Tumoral , Ritmo Circadiano , Dimerización , Genes Reporteros , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
3.
J Biol Chem ; 289(11): 7884-96, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24492615

RESUMEN

Glucose is a critical component in the proinflammatory response of macrophages (MΦs). However, the contribution of glucose transporters (GLUTs) and the mechanisms regulating subsequent glucose metabolism in the inflammatory response are not well understood. Because MΦs contribute to obesity-induced inflammation, it is important to understand how substrate metabolism may alter inflammatory function. We report that GLUT1 (SLC2A1) is the primary rate-limiting glucose transporter on proinflammatory-polarized MΦs. Furthermore, in high fat diet-fed rodents, MΦs in crown-like structures and inflammatory loci in adipose and liver, respectively, stain positively for GLUT1. We hypothesized that metabolic reprogramming via increased glucose availability could modulate the MΦ inflammatory response. To increase glucose uptake, we stably overexpressed the GLUT1 transporter in RAW264.7 MΦs (GLUT1-OE MΦs). Cellular bioenergetics analysis, metabolomics, and radiotracer studies demonstrated that GLUT1 overexpression resulted in elevated glucose uptake and metabolism, increased pentose phosphate pathway intermediates, with a complimentary reduction in cellular oxygen consumption rates. Gene expression and proteome profiling analysis revealed that GLUT1-OE MΦs demonstrated a hyperinflammatory state characterized by elevated secretion of inflammatory mediators and that this effect could be blunted by pharmacologic inhibition of glycolysis. Finally, reactive oxygen species production and evidence of oxidative stress were significantly enhanced in GLUT1-OE MΦs; antioxidant treatment blunted the expression of inflammatory mediators such as PAI-1 (plasminogen activator inhibitor 1), suggesting that glucose-mediated oxidative stress was driving the proinflammatory response. Our results indicate that increased utilization of glucose induced a ROS-driven proinflammatory phenotype in MΦs, which may play an integral role in the promotion of obesity-associated insulin resistance.


Asunto(s)
Transportador de Glucosa de Tipo 1/metabolismo , Glucosa/metabolismo , Inflamación/metabolismo , Macrófagos/citología , Tejido Adiposo/metabolismo , Animales , Transporte Biológico , Células de la Médula Ósea/citología , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Glucosa/farmacocinética , Inmunohistoquímica , Hígado/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Vía de Pentosa Fosfato , Fenotipo , Proteómica , Especies Reactivas de Oxígeno/metabolismo
4.
Cancer Res ; 70(20): 8066-76, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20876800

RESUMEN

Unlike the growth factor dependence of normal cells, cancer cells can maintain growth factor-independent glycolysis and survival through expression of oncogenic kinases, such as BCR-Abl. Although targeted kinase inhibition can promote cancer cell death, therapeutic resistance develops frequently, and further mechanistic understanding is needed. Cell metabolism may be central to this cell death pathway, as we have shown that growth factor deprivation leads to decreased glycolysis that promotes apoptosis via p53 activation and induction of the proapoptotic protein Puma. Here, we extend these findings to show that elevated glucose metabolism, characteristic of cancer cells, can suppress protein kinase Cδ (PKCδ)-dependent p53 activation to maintain cell survival after growth factor withdrawal. In contrast, DNA damage-induced p53 activation was PKCδ independent and was not metabolically sensitive. Both stresses required p53 Ser(18) phosphorylation for maximal activity but led to unique patterns of p53 target gene expression, showing distinct activation and response pathways for p53 that were differentially regulated by metabolism. Consistent with oncogenic kinases acting to replace growth factors, treatment of BCR-Abl-expressing cells with the kinase inhibitor imatinib led to reduced metabolism and p53- and Puma-dependent cell death. Accordingly, maintenance of glucose uptake inhibited p53 activation and promoted imatinib resistance. Furthermore, inhibition of glycolysis enhanced imatinib sensitivity in BCR-Abl-expressing cells with wild-type p53 but had little effect on p53-null cells. These data show that distinct pathways regulate p53 after DNA damage and metabolic stress and that inhibiting glucose metabolism may enhance the efficacy of and overcome resistance to targeted molecular cancer therapies.


Asunto(s)
Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Aerobiosis , Apoptosis , Proteínas de Ciclo Celular/genética , División Celular , Supervivencia Celular , Daño del ADN , Glucólisis , Humanos , Activación de Linfocitos , Proteínas Nucleares/genética , Plásmidos , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas c-mdm2/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/inmunología , Transfección , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína X Asociada a bcl-2/genética , Proteína bcl-X/genética , Dominios Homologos src/genética
5.
J Biol Chem ; 285(26): 19705-9, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20457610

RESUMEN

The mammalian target of rapamycin (mTOR) is a key cell growth regulator, which forms two distinct functional complexes (mTORC1 and mTORC2). mTORC1, which is directly inhibited by rapamycin, promotes cell growth by stimulating protein synthesis and inhibiting autophagy. mTORC1 is regulated by a wide range of extra- and intracellular signals, including growth factors, nutrients, and energy levels. Precise regulation of mTORC1 is important for normal cellular physiology and development, and dysregulation of mTORC1 contributes to hypertrophy and tumorigenesis. In this study, we screened Drosophila small GTPases for their function in TORC1 regulation and found that TORC1 activity is regulated by members of the Rab and Arf family GTPases, which are key regulators of intracellular vesicle trafficking. In mammalian cells, uncontrolled activation of Rab5 and Arf1 strongly inhibit mTORC1 activity. Interestingly, the effect of Rab5 and Arf1 on mTORC1 is specific to amino acid stimulation, whereas glucose-induced mTORC1 activation is not blocked by Rab5 or Arf1. Similarly, active Rab5 selectively inhibits mTORC1 activation by Rag GTPases, which are involved in amino acid signaling, but does not inhibit the effect of Rheb, which directly binds and activates mTORC1. Our data demonstrate a key role of Rab and Arf family small GTPases and intracellular trafficking in mTORC1 activation, particularly in response to amino acids.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Aminoácidos/farmacología , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Glucosa/farmacología , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Mutación , Fosforilación/efectos de los fármacos , Unión Proteica , Proteínas , Interferencia de ARN , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética , Transfección , Proteínas de Unión al GTP rab5/genética
6.
Dev Cell ; 17(1): 6-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19619487

RESUMEN

Nutrient overabundance is known to promote cellular hypertrophy, a significant pathological event in diseases like diabetes and cancer, although mechanisms have remained unclear. In this issue of Developmental Cell, Wu and Derynck provide a new model that links metabolism and cell growth by demonstrating that hyperglycemia can increase TGF-beta-dependent activation of the mTOR pathway to promote cellular hyperplasia.


Asunto(s)
Hiperglucemia/fisiopatología , Hipertrofia/fisiopatología , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Glucosa/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteínas Smad/metabolismo , Serina-Treonina Quinasas TOR
7.
Biochem Soc Trans ; 37(Pt 1): 232-6, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19143638

RESUMEN

In response to nutrient deficiency, eukaryotic cells activate macroautophagy, a degradative process in which proteins, organelles and cytoplasm are engulfed within unique vesicles called autophagosomes. Fusion of these vesicles with the endolysosomal compartment leads to breakdown of the sequestered material into amino acids and other simple molecules, which can be used as nutrient sources during periods of starvation. This process is driven by a group of autophagy-related (Atg) proteins, and is suppressed by TOR (target of rapamycin) signalling under favourable conditions. Several distinct kinase complexes have been implicated in autophagic signalling downstream of TOR. In yeast, TOR is known to control autophagosome formation in part through a multiprotein complex containing the serine/threonine protein kinase Atg1. Recent work in Drosophila and mammalian systems suggests that this complex and its regulation by TOR are conserved in higher eukaryotes, and that Atg1 has accrued additional functions including feedback regulation of TOR itself. TOR and Atg1 also control the activity of a second kinase complex containing Atg6/Beclin 1, Vps (vacuolar protein sorting) 15 and the class III PI3K (phosphoinositide 3-kinase) Vps34. During autophagy induction, Vps34 activity is mobilized from an early endosomal compartment to nascent autophagic membranes, in a TOR- and Atg1-responsive manner. Finally, the well-known TOR substrate S6K (p70 ribosomal protein S6 kinase) has been shown to play a positive role in autophagy, which may serve to limit levels of autophagy under conditions of continuously low TOR activity. Further insight into these TOR-dependent control mechanisms may support development of autophagy-based therapies for a number of pathological conditions.


Asunto(s)
Autofagia , Alimentos , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Fagosomas/enzimología , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
8.
Nat Cell Biol ; 10(8): 935-45, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18604198

RESUMEN

TORC1 (target of rapamycin complex 1) has a crucial role in the regulation of cell growth and size. A wide range of signals, including amino acids, is known to activate TORC1. Here, we report the identification of Rag GTPases as activators of TORC1 in response to amino acid signals. Knockdown of Rag gene expression suppressed the stimulatory effect of amino acids on TORC1 in Drosophila melanogaster S2 cells. Expression of constitutively active (GTP-bound) Rag in mammalian cells activated TORC1 in the absence of amino acids, whereas expression of dominant-negative Rag blocked the stimulatory effects of amino acids on TORC1. Genetic studies in Drosophila also show that Rag GTPases regulate cell growth, autophagy and animal viability during starvation. Our studies establish a function of Rag GTPases in TORC1 activation in response to amino acid signals.


Asunto(s)
Aminoácidos/farmacología , Proteínas de Drosophila/genética , Proteínas de Unión al GTP Monoméricas/fisiología , Fosfatidilinositol 3-Quinasas/genética , Animales , Autofagia , Línea Celular , Proliferación Celular , Tamaño de la Célula , Drosophila melanogaster , Alimentos , Humanos , Proteínas Quinasas , ARN Interferente Pequeño/farmacología , Transducción de Señal , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...