Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 4(7): 826-835, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35879458

RESUMEN

Body weight and adiposity represent biologically controlled parameters that are influenced by a combination of genetic, developmental and environmental variables. Although the hypothalamus plays a crucial role in matching caloric intake with energy expenditure to achieve a stable body weight, it is now recognized that neuronal circuits in the hindbrain not only serve to produce nausea and to terminate feeding in response to food consumption or during pathological states, but also contribute to the long-term control of body weight. Additionally, recent work has identified hindbrain neurons that are capable of suppressing food intake without producing aversive responses like those associated with nausea. Here we review recent advances in our understanding of the hindbrain neurons that control feeding, particularly those located in the area postrema and the nucleus tractus solitarius. We frame this information in the context of new atlases of hindbrain neuronal populations and develop a model of the hindbrain circuits that control food intake and energy balance, suggesting important areas for additional research.


Asunto(s)
Ingestión de Alimentos , Metabolismo Energético , Peso Corporal , Metabolismo Energético/fisiología , Conducta Alimentaria , Humanos , Náusea , Núcleo Solitario
2.
Nat Metab ; 3(4): 530-545, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33767443

RESUMEN

The brainstem dorsal vagal complex (DVC) is known to regulate energy balance and is the target of appetite-suppressing hormones, such as glucagon-like peptide 1 (GLP-1). Here we provide a comprehensive genetic map of the DVC and identify neuronal populations that control feeding. Combining bulk and single-nucleus gene expression and chromatin profiling of DVC cells, we reveal 25 neuronal populations with unique transcriptional and chromatin accessibility landscapes and peptide receptor expression profiles. GLP-1 receptor (GLP-1R) agonist administration induces gene expression alterations specific to two distinct sets of Glp1r neurons-one population in the area postrema and one in the nucleus of the solitary tract that also expresses calcitonin receptor (Calcr). Transcripts and regions of accessible chromatin near obesity-associated genetic variants are enriched in the area postrema and the nucleus of the solitary tract neurons that express Glp1r and/or Calcr, and activating several of these neuronal populations decreases feeding in rodents. Thus, DVC neuronal populations associated with obesity predisposition suppress feeding and may represent therapeutic targets for obesity.


Asunto(s)
Mapeo Cromosómico , Obesidad/genética , Obesidad/fisiopatología , Nervio Vago/fisiopatología , Animales , Apetito/genética , Peso Corporal/genética , Tronco Encefálico/fisiopatología , Proteína Similar al Receptor de Calcitonina/genética , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Expresión Génica , Receptor del Péptido 1 Similar al Glucagón/antagonistas & inhibidores , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas , Núcleo Solitario/fisiología
3.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33593916

RESUMEN

The TGFß cytokine family member, GDF-15, reduces food intake and body weight and represents a potential treatment for obesity. Because the brainstem-restricted expression pattern of its receptor, GDNF Family Receptor α-like (GFRAL), presents an exciting opportunity to understand mechanisms of action for area postrema neurons in food intake; we generated GfralCre and conditional GfralCreERT mice to visualize and manipulate GFRAL neurons. We found infection or pathophysiologic states (rather than meal ingestion) stimulate GFRAL neurons. TRAP-Seq analysis of GFRAL neurons revealed their expression of a wide range of neurotransmitters and neuropeptides. Artificially activating GfralCre -expressing neurons inhibited feeding, decreased gastric emptying, and promoted a conditioned taste aversion (CTA). GFRAL neurons most strongly innervate the parabrachial nucleus (PBN), where they target CGRP-expressing (CGRPPBN) neurons. Silencing CGRPPBN neurons abrogated the aversive and anorexic effects of GDF-15. These findings suggest that GFRAL neurons link non-meal-associated pathophysiologic signals to suppress nutrient uptake and absorption.


Asunto(s)
Reacción de Prevención/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor 15 de Diferenciación de Crecimiento/farmacología , Neuronas/fisiología , Núcleos Parabraquiales/fisiología , Animales , Peso Corporal , Femenino , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Masculino , Ratones , Neuronas/efectos de los fármacos , Núcleos Parabraquiales/efectos de los fármacos , Ratas , Ratas Long-Evans
4.
Mol Metab ; 32: 168-175, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32029227

RESUMEN

BACKGROUND: Leptin acts via its receptor, LepRb, on specialized neurons in the brain to modulate energy balance and glucose homeostasis. LepRb→STAT3 signaling plays a crucial role in leptin action, but LepRb also mediates an additional as-yet-unidentified signal (Signal 2) that is important for leptin action. Signal 2 requires LepRb regions in addition to those required for JAK2 activation but operates independently of STAT3 and LepRb phosphorylation sites. METHODS: To identify LepRb sequences that mediate Signal 2, we used CRISPR/Cas9 to generate five novel mouse lines containing COOH-terminal truncation mutants of LepRb. We analyzed the metabolic phenotype and measures of hypothalamic function for these mouse lines. RESULTS: We found that deletion of LepRb sequences between residues 921 and 960 dramatically worsens metabolic control and alters hypothalamic function relative to smaller truncations. We also found that deletion of the regions including residues 1013-1053 and 960-1013 each decreased obesity compared to deletions that included additional COOH-terminal residues. CONCLUSIONS: LepRb sequences between residues 921 and 960 mediate the STAT3 and LepRb phosphorylation-independent second signal that contributes to the control of energy balance and metabolism by leptin/LepRb. In addition to confirming the inhibitory role of the region (residues 961-1013) containing Tyr985, we also identified the region containing residues 1013-1053 (which contains no Tyr residues) as a second potential mediator of LepRb inhibition. Thus, the intracellular domain of LepRb mediates multiple Tyr-independent signals.


Asunto(s)
Receptores de Leptina/genética , Factor de Transcripción STAT3/metabolismo , Secuencia de Aminoácidos , Animales , Sistemas CRISPR-Cas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/metabolismo , Receptores de Leptina/metabolismo , Factor de Transcripción STAT3/genética , Transducción de Señal
5.
Cell Metab ; 31(2): 301-312.e5, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31955990

RESUMEN

To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating CalcrNTS neurons decreased food intake and body weight but (unlike neighboring CckNTS cells) failed to promote aversion, revealing that CalcrNTS neurons mediate a non-aversive suppression of food intake. While both CalcrNTS and CckNTS neurons decreased feeding via projections to the PBN, CckNTS cells activated aversive CGRPPBN cells while CalcrNTS cells activated distinct non-CGRP PBN cells. Hence, CalcrNTS cells suppress feeding via non-aversive, non-CGRP PBN targets. Additionally, silencing CalcrNTS cells blunted food intake suppression by gut peptides and nutrients, increasing food intake and promoting obesity. Hence, CalcrNTS neurons define a hindbrain system that participates in physiological energy balance and suppresses food intake without activating aversive systems.


Asunto(s)
Ingestión de Alimentos , Metabolismo Energético , Neuronas/metabolismo , Receptores de Calcitonina/fisiología , Núcleo Solitario/metabolismo , Animales , Peso Corporal , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Núcleo Solitario/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...