Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6633, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117603

RESUMEN

Translation is regulated mainly in the initiation step, and its dysregulation is implicated in many human diseases. Several proteins have been found to regulate translational initiation, including Pdcd4 (programmed cell death gene 4). Pdcd4 is a tumor suppressor protein that prevents cell growth, invasion, and metastasis. It is downregulated in most tumor cells, while global translation in the cell is upregulated. To understand the mechanisms underlying translational control by Pdcd4, we used single-particle cryo-electron microscopy to determine the structure of human Pdcd4 bound to 40S small ribosomal subunit, including Pdcd4-40S and Pdcd4-40S-eIF4A-eIF3-eIF1 complexes. The structures reveal the binding site of Pdcd4 at the mRNA entry site in the 40S, where the C-terminal domain (CTD) interacts with eIF4A at the mRNA entry site, while the N-terminal domain (NTD) is inserted into the mRNA channel and decoding site. The structures, together with quantitative binding and in vitro translation assays, shed light on the critical role of the NTD for the recruitment of Pdcd4 to the ribosomal complex and suggest a model whereby Pdcd4 blocks the eIF4F-independent role of eIF4A during recruitment and scanning of the 5' UTR of mRNA.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Microscopía por Crioelectrón , Unión Proteica , ARN Mensajero , Proteínas de Unión al ARN , Subunidades Ribosómicas Pequeñas de Eucariotas , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Sitios de Unión , Biosíntesis de Proteínas , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Modelos Moleculares
2.
Nat Struct Mol Biol ; 31(3): 455-464, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38287194

RESUMEN

Eukaryotic translation initiation involves recruitment of the 43S pre-initiation complex to the 5' end of mRNA by the cap-binding complex eIF4F, forming the 48S translation initiation complex (48S), which then scans along the mRNA until the start codon is recognized. We have previously shown that eIF4F binds near the mRNA exit channel of the 43S, leaving open the question of how mRNA secondary structure is removed as it enters the mRNA channel on the other side of the 40S subunit. Here we report the structure of a human 48S that shows that, in addition to the eIF4A that is part of eIF4F, there is a second eIF4A helicase bound at the mRNA entry site, which could unwind RNA secondary structures as they enter the 48S. The structure also reveals conserved interactions between eIF4F and the 43S, probaby explaining how eIF4F can promote mRNA recruitment in all eukaryotes.


Asunto(s)
Factor 4F Eucariótico de Iniciación , Iniciación de la Cadena Peptídica Traduccional , Humanos , Factor 4F Eucariótico de Iniciación/genética , Factor 4F Eucariótico de Iniciación/metabolismo , ARN Mensajero/metabolismo , Codón Iniciador/metabolismo , Ribosomas/metabolismo , ADN Helicasas/metabolismo , Biosíntesis de Proteínas , Factor 4A Eucariótico de Iniciación/química , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo
4.
Structure ; 30(1): 156-171.e12, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34492227

RESUMEN

R2TP is a highly conserved chaperone complex formed by two AAA+ ATPases, RUVBL1 and RUVBL2, that associate with PIH1D1 and RPAP3 proteins. R2TP acts in promoting macromolecular complex formation. Here, we establish the principles of R2TP assembly. Three distinct RUVBL1/2-based complexes are identified: R2TP, RUVBL1/2-RPAP3 (R2T), and RUVBL1/2-PIH1D1 (R2P). Interestingly, we find that PIH1D1 does not bind to RUVBL1/RUVBL2 in R2TP and does not function as a nucleotide exchange factor; instead, RPAP3 is found to be the central subunit coordinating R2TP architecture and linking PIH1D1 and RUVBL1/2. We also report that RPAP3 contains an intrinsically disordered N-terminal domain mediating interactions with substrates whose sequences are primarily enriched for Armadillo repeat domains and other helical-type domains. Our work provides a clear and consistent model of R2TP complex structure and gives important insights into how a chaperone machine concerned with assembly of folded proteins into multisubunit complexes might work.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Complejos Multiproteicos/química , ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas Reguladoras de la Apoptosis/química , Sitios de Unión , Proteínas Portadoras/química , Cromatografía en Gel , ADN Helicasas/química , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Conformación Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína
5.
Nucleic Acids Res ; 49(20): 11491-11511, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34648019

RESUMEN

The eukaryotic initiation factor 3 (eIF3) complex is involved in every step of translation initiation, but there is limited understanding of its molecular functions. Here, we present a single particle electron cryomicroscopy (cryo-EM) reconstruction of yeast 48S ribosomal preinitiation complex (PIC) in an open conformation conducive to scanning, with core subunit eIF3b bound on the 40S interface near the decoding center in contact with the ternary complex eIF2·GTP·initiator tRNA. eIF3b is relocated together with eIF3i from their solvent interface locations observed in other PIC structures, with eIF3i lacking 40S contacts. Re-processing of micrographs of our previous 48S PIC in a closed state also suggests relocation of the entire eIF3b-3i-3g-3a-Cter module during the course of initiation. Genetic analysis indicates that high fidelity initiation depends on eIF3b interactions at the 40S subunit interface that promote the closed PIC conformation, or facilitate the relocation of eIF3b/eIF3i to the solvent interface, on start codon selection.


Asunto(s)
Codón Iniciador , Factor 3 de Iniciación Eucariótica/química , Proteínas Fúngicas/química , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/ultraestructura , Microscopía por Crioelectrón , Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas Fúngicas/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Kluyveromyces , Simulación de Dinámica Molecular , Unión Proteica , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Imagen Individual de Molécula
6.
Science ; 369(6508): 1220-1227, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32883864

RESUMEN

A key step in translational initiation is the recruitment of the 43S preinitiation complex by the cap-binding complex [eukaryotic initiation factor 4F (eIF4F)] at the 5' end of messenger RNA (mRNA) to form the 48S initiation complex (i.e., the 48S). The 48S then scans along the mRNA to locate a start codon. To understand the mechanisms involved, we used cryo-electron microscopy to determine the structure of a reconstituted human 48S The structure reveals insights into early events of translation initiation complex assembly, as well as how eIF4F interacts with subunits of eIF3 near the mRNA exit channel in the 43S The location of eIF4F is consistent with a slotting model of mRNA recruitment and suggests that downstream mRNA is unwound at least in part by being "pulled" through the 40S subunit during scanning.


Asunto(s)
Factor 3 de Iniciación Eucariótica/química , Factor 4F Eucariótico de Iniciación/química , Iniciación de la Cadena Peptídica Traduccional , Adenosina Trifosfato/química , Codón Iniciador , Microscopía por Crioelectrón , Humanos , Hidrólisis , ARN Mensajero/química
7.
Nat Commun ; 10(1): 2640, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201334

RESUMEN

One of the responses to stress by eukaryotic cells is the down-regulation of protein synthesis by phosphorylation of translation initiation factor eIF2. Phosphorylation results in low availability of the eIF2 ternary complex (eIF2-GTP-tRNAi) by affecting the interaction of eIF2 with its GTP-GDP exchange factor eIF2B. We have determined the cryo-EM structure of yeast eIF2B in complex with phosphorylated eIF2 at an overall resolution of 4.2 Å. Two eIF2 molecules bind opposite sides of an eIF2B hetero-decamer through eIF2α-D1, which contains the phosphorylated Ser51. eIF2α-D1 is mainly inserted between the N-terminal helix bundle domains of δ and α subunits of eIF2B. Phosphorylation of Ser51 enhances binding to eIF2B through direct interactions of phosphate groups with residues in eIF2Bα and indirectly by inducing contacts of eIF2α helix 58-63 with eIF2Bδ leading to a competition with Met-tRNAi.


Asunto(s)
Factor 2B Eucariótico de Iniciación/ultraestructura , Factor 2 Eucariótico de Iniciación/ultraestructura , Biosíntesis de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/ultraestructura , Microscopía por Crioelectrón , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/metabolismo , Guanosina Difosfato/metabolismo , Modelos Moleculares , Fosforilación/fisiología , Unión Proteica/fisiología , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
8.
Science ; 363(6428): 740-744, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30765567

RESUMEN

During trans-translation, transfer-messenger RNA (tmRNA) and small protein B (SmpB) together rescue ribosomes stalled on a truncated mRNA and tag the nascent polypeptide for degradation. We used cryo-electron microscopy to determine the structures of three key states of the tmRNA-SmpB-ribosome complex during trans translation at resolutions of 3.7 to 4.4 angstroms. The results show how tmRNA and SmpB act specifically on stalled ribosomes and how the circularized complex moves through the ribosome, enabling translation to switch from the old defective message to the reading frame on tmRNA.


Asunto(s)
Biosíntesis de Proteínas , ARN Bacteriano/química , Proteínas de Unión al ARN/química , Ribosomas/química , Microscopía por Crioelectrón , Escherichia coli , Movimiento (Física) , Thermus thermophilus
9.
Elife ; 72018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30475211

RESUMEN

In eukaryotic translation initiation, AUG recognition of the mRNA requires accommodation of Met-tRNAi in a 'PIN' state, which is antagonized by the factor eIF1. eIF5 is a GTPase activating protein (GAP) of eIF2 that additionally promotes stringent AUG selection, but the molecular basis of its dual function was unknown. We present a cryo-electron microscopy (cryo-EM) reconstruction of a yeast 48S pre-initiation complex (PIC), at an overall resolution of 3.0 Å, featuring the N-terminal domain (NTD) of eIF5 bound to the 40S subunit at the location vacated by eIF1. eIF5 interacts with and allows a more accommodated orientation of Met-tRNAi. Substitutions of eIF5 residues involved in the eIF5-NTD/tRNAi interaction influenced initiation at near-cognate UUG codonsin vivo, and the closed/open PIC conformation in vitro, consistent with direct stabilization of the codon:anticodon duplex by the wild-type eIF5-NTD. The present structure reveals the basis for a key role of eIF5 in start-codon selection.


Asunto(s)
Factor 1 Eucariótico de Iniciación/genética , Factores de Iniciación de Péptidos/genética , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Ribosomas/genética , Sitios de Unión , Codón Iniciador/genética , Microscopía por Crioelectrón , Factor 2 Eucariótico de Iniciación/genética , Regulación Fúngica de la Expresión Génica , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Ribosomas/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Factor 5A Eucariótico de Iniciación de Traducción
10.
Science ; 358(6366): 1056-1059, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29074584

RESUMEN

Newly transcribed eukaryotic precursor messenger RNAs (pre-mRNAs) are processed at their 3' ends by the ~1-megadalton multiprotein cleavage and polyadenylation factor (CPF). CPF cleaves pre-mRNAs, adds a polyadenylate tail, and triggers transcription termination, but it is unclear how its various enzymes are coordinated and assembled. Here, we show that the nuclease, polymerase, and phosphatase activities of yeast CPF are organized into three modules. Using electron cryomicroscopy, we determined a 3.5-angstrom-resolution structure of the ~200-kilodalton polymerase module. This revealed four ß propellers, in an assembly markedly similar to those of other protein complexes that bind nucleic acid. Combined with in vitro reconstitution experiments, our data show that the polymerase module brings together factors required for specific and efficient polyadenylation, to help coordinate mRNA 3'-end processing.


Asunto(s)
Procesamiento de Término de ARN 3' , ARN Polimerasa II/química , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Factores de Escisión y Poliadenilación de ARNm/química , Microscopía por Crioelectrón , Polinucleotido Adenililtransferasa/metabolismo , Conformación Proteica , ARN Polimerasa II/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factores de Escisión y Poliadenilación de ARNm/ultraestructura
11.
EMBO J ; 36(23): 3458-3482, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046335

RESUMEN

Kinetochores are dynamic cellular structures that connect chromosomes to microtubules. They form from multi-protein assemblies that are evolutionarily conserved between yeasts and humans. One of these assemblies-COMA-consists of subunits Ame1CENP-U, Ctf19CENP-P, Mcm21CENP-O and Okp1CENP-Q A description of COMA molecular organization has so far been missing. We defined the subunit topology of COMA, bound with inner kinetochore proteins Nkp1 and Nkp2, from the yeast Kluyveromyces lactis, with nanoflow electrospray ionization mass spectrometry, and mapped intermolecular contacts with hydrogen-deuterium exchange coupled to mass spectrometry. Our data suggest that the essential Okp1 subunit is a multi-segmented nexus with distinct binding sites for Ame1, Nkp1-Nkp2 and Ctf19-Mcm21. Our crystal structure of the Ctf19-Mcm21 RWD domains bound with Okp1 shows the molecular contacts of this important inner kinetochore joint. The Ctf19-Mcm21 binding motif in Okp1 configures a branch of mitotic inner kinetochores, by tethering Ctf19-Mcm21 and Chl4CENP-N-Iml3CENP-L Absence of this motif results in dependence on the mitotic checkpoint for viability.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cinetocoros/química , Cinetocoros/metabolismo , Secuencia de Aminoácidos , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Medición de Intercambio de Deuterio , Proteínas Fúngicas/genética , Humanos , Kluyveromyces/citología , Kluyveromyces/genética , Kluyveromyces/metabolismo , Mitosis , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometría de Masa por Ionización de Electrospray
12.
Science ; 354(6318): 1437-1440, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27934701

RESUMEN

Ribosomes stall when they encounter the end of messenger RNA (mRNA) without an in-frame stop codon. In bacteria, these "nonstop" complexes can be rescued by alternative ribosome-rescue factor A (ArfA). We used electron cryomicroscopy to determine structures of ArfA bound to the ribosome with 3'-truncated mRNA, at resolutions ranging from 3.0 to 3.4 angstroms. ArfA binds within the ribosomal mRNA channel and substitutes for the absent stop codon in the A site by specifically recruiting release factor 2 (RF2), initially in a compact preaccommodated state. A similar conformation of RF2 may occur on stop codons, suggesting a general mechanism for release-factor-mediated translational termination in which a conformational switch leads to peptide release only when the appropriate signal is present in the A site.


Asunto(s)
Codón de Terminación , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/metabolismo , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/química , Proteínas de Unión al ARN/ultraestructura , Regiones no Traducidas 3' , Microscopía por Crioelectrón , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Factores de Terminación de Péptidos/metabolismo , Péptidos/química , Péptidos/metabolismo , Conformación Proteica , Estabilidad Proteica , ARN Bacteriano/química , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Ribosomas/ultraestructura
13.
Nature ; 534(7606): 277-280, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27279228

RESUMEN

In order to survive, bacteria continually sense, and respond to, environmental fluctuations. Stringent control represents a key bacterial stress response to nutrient starvation that leads to rapid and comprehensive reprogramming of metabolic and transcriptional patterns. In general, transcription of genes for growth and proliferation is downregulated, while those important for survival and virulence are upregulated. Amino acid starvation is sensed by depletion of the aminoacylated tRNA pools, and this results in accumulation of ribosomes stalled with non-aminoacylated (uncharged) tRNA in the ribosomal A site. RelA is recruited to stalled ribosomes and activated to synthesize a hyperphosphorylated guanosine analogue, (p)ppGpp, which acts as a pleiotropic secondary messenger. However, structural information about how RelA recognizes stalled ribosomes and discriminates against aminoacylated tRNAs is missing. Here we present the cryo-electron microscopy structure of RelA bound to the bacterial ribosome stalled with uncharged tRNA. The structure reveals that RelA utilizes a distinct binding site compared to the translational factors, with a multi-domain architecture that wraps around a highly distorted A-site tRNA. The TGS (ThrRS, GTPase and SpoT) domain of RelA binds the CCA tail to orient the free 3' hydroxyl group of the terminal adenosine towards a ß-strand, such that an aminoacylated tRNA at this position would be sterically precluded. The structure supports a model in which association of RelA with the ribosome suppresses auto-inhibition to activate synthesis of (p)ppGpp and initiate the stringent response. Since stringent control is responsible for the survival of pathogenic bacteria under stress conditions, and contributes to chronic infections and antibiotic tolerance, RelA represents a good target for the development of novel antibacterial therapeutics.


Asunto(s)
Aminoácidos/deficiencia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , GTP Pirofosfoquinasa/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Estrés Fisiológico , Adenosina/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , GTP Pirofosfoquinasa/antagonistas & inhibidores , GTP Pirofosfoquinasa/genética , GTP Pirofosfoquinasa/ultraestructura , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Redes y Vías Metabólicas , Modelos Moleculares , Fosforilación , Biosíntesis de Proteínas , Conformación Proteica , Estructura Terciaria de Proteína , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/ultraestructura , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/química , Ribosomas/ultraestructura , Sistemas de Mensajero Secundario
14.
Cell Discov ; 1: 15020, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27462419

RESUMEN

Translation of messenger RNA (mRNA) into proteins is key to eukaryotic gene expression and begins when initiation factor-2 (eIF2) delivers methionyl initiator tRNA (Met-tRNAi (Met)) to ribosomes. This first step is controlled by eIF2B mediating guanine nucleotide exchange on eIF2. We isolated eIF2 from yeast and used mass spectrometry to study the intact complex, and found that eIF2ß is the most labile of the three subunits (eIF2α/ß/γ). We then compared conformational dynamics of the ternary complex eIF2:GTP:Met-tRNAi (Met) with apo eIF2 using comparative chemical cross-linking. Results revealed high conformational dynamics for eIF2α in apo eIF2 while in the ternary complex all three subunits are constrained. Novel post-translational modifications identified here in both eIF2 and eIF2B were combined with established sites, and located within protein sequences and homology models. We found clustering at subunit interfaces and highly phosphorylated unstructured regions, at the N-terminus of eIF2ß, and also between the eIF2Bε core and catalytic domains. We propose that modifications of these unstructured regions have a key role in regulating interactions between eIF2 and eIF2B, as well as other eIFs.

15.
Chem Biol ; 22(1): 117-28, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25544043

RESUMEN

Describing, understanding, and modulating the function of the cell require elucidation of the structures of macromolecular assemblies. Here, we describe an integrative method for modeling heteromeric complexes using as a starting point disassembly pathways determined by native mass spectrometry (MS). In this method, the pathway data and other available information are encoded as a scoring function on the positions of the subunits of the complex. The method was assessed on its ability to reproduce the native contacts in five benchmark cases with simulated MS data and two cases with real MS data. To illustrate the power of our method, we purified the yeast initiation factor 3 (eIF3) complex and characterized it by native MS and chemical crosslinking MS. We established substoichiometric binding of eIF5 and derived a model for the five-subunit eIF3 complex, at domain level, consistent with its role as a scaffold for other initiation factors.


Asunto(s)
Factor 3 de Iniciación Eucariótica/análisis , Modelos Moleculares , Factores de Iniciación de Péptidos/análisis , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas en Tándem , Factor 3 de Iniciación Eucariótica/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Unión Proteica , Curva ROC , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Biochim Biophys Acta ; 1850(1): 150-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25450178

RESUMEN

BACKGROUND: The ribosomal stalk composed of P-proteins constitutes a structure on the large ribosomal particle responsible for recruitment of translation factors and stimulation of factor-dependent GTP hydrolysis during translation. The main components of the stalk are P-proteins, which form a pentamer. Despite the conserved basic function of the stalk, the P-proteins do not form a uniform entity, displaying heterogeneity in the primary structure across the eukaryotic lineage. The P-proteins from protozoan parasites are among the most evolutionarily divergent stalk proteins. METHODS: We have assembled P-stalk complex of Plasmodium falciparum in vivo in bacterial system using tricistronic expression cassette and provided its characteristics by biochemical and biophysical methods. RESULTS: All three individual P-proteins, namely uL10/P0, P1 and P2, are indispensable for acquisition of a stable structure of the P stalk complex and the pentameric uL10/P0-(P1-P2)2form represents the most favorable architecture for parasite P-proteins. CONCLUSION: The formation of P. falciparum P-stalk is driven by trilateral interaction between individual elements which represents unique mode of assembling, without stable P1-P2 heterodimeric intermediate. GENERAL SIGNIFICANCE: On the basis of our mass-spectrometry analysis supported by the bacterial two-hybrid assay and biophysical analyses, a unique pathway of the parasite stalk assembling has been proposed. We suggest that the absence of P1/P2 heterodimer, and the formation of a stable pentamer in the presence of all three proteins, indicate a one-step formation to be the main pathway for the vital ribosomal stalk assembly, whereas the P2 homo-oligomer may represent an off-pathway product with physiologically important nonribosomal role.


Asunto(s)
Fosfoproteínas/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Ribosómicas/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Plasmodium falciparum/genética , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
17.
EMBO J ; 33(14): 1514-26, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24872509

RESUMEN

The conserved eukaryotic Pan2-Pan3 deadenylation complex shortens cytoplasmic mRNA 3' polyA tails to regulate mRNA stability. Although the exonuclease activity resides in Pan2, efficient deadenylation requires Pan3. The mechanistic role of Pan3 is unclear. Here, we show that Pan3 binds RNA directly both through its pseudokinase/C-terminal domain and via an N-terminal zinc finger that binds polyA RNA specifically. In contrast, isolated Pan2 is unable to bind RNA. Pan3 binds to the region of Pan2 that links its N-terminal WD40 domain to the C-terminal part that contains the exonuclease, with a 2:1 stoichiometry. The crystal structure of the Pan2 linker region bound to a Pan3 homodimer shows how the unusual structural asymmetry of the Pan3 dimer is used to form an extensive high-affinity interaction. This binding allows Pan3 to supply Pan2 with substrate polyA RNA, facilitating efficient mRNA deadenylation by the intact Pan2-Pan3 complex.


Asunto(s)
Chaetomium/química , Exorribonucleasas/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Cromatografía de Afinidad , Clonación Molecular , Ensayo de Cambio de Movilidad Electroforética , Exorribonucleasas/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , Multimerización de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Sefarosa , Análisis de Secuencia de ADN
18.
Nat Commun ; 5: 3902, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24852487

RESUMEN

eIF2B facilitates and controls protein synthesis in eukaryotes by mediating guanine nucleotide exchange on its partner eIF2. We combined mass spectrometry (MS) with chemical cross-linking, surface accessibility measurements and homology modelling to define subunit stoichiometry and interactions within eIF2B and eIF2. Although it is generally accepted that eIF2B is a pentamer of five non-identical subunits (α-ε), here we show that eIF2B is a decamer. MS and cross-linking of eIF2B complexes allows us to propose a model for the subunit arrangements within eIF2B where the subunit assembly occurs through catalytic γ- and ε-subunits, with regulatory subunits arranged in asymmetric trimers associated with the core. Cross-links between eIF2 and eIF2B allow modelling of interactions that contribute to nucleotide exchange and its control by eIF2 phosphorylation. Finally, we identify that GTP binds to eIF2Bγ, prompting us to propose a multi-step mechanism for nucleotide exchange.


Asunto(s)
Factor 2B Eucariótico de Iniciación/química , Factor 2B Eucariótico de Iniciación/metabolismo , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Reactivos de Enlaces Cruzados/farmacología , Electroforesis en Gel de Poliacrilamida , Factor 2 Eucariótico de Iniciación/metabolismo , Guanosina Trifosfato/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína , Solventes , Homología Estructural de Proteína
19.
FASEB J ; 28(5): 2225-37, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24532666

RESUMEN

Eukaryotic initiation factor 2B (eIF2B) is the guanine nucleotide exchange factor for eIF2 and a critical regulator of protein synthesis, (e.g., as part of the integrated stress response). Certain mutations in the EIF2B genes cause leukoencephalopathy with vanishing white matter (VWM), an often serious neurological disorder. Comprising 5 subunits, α-ε (eIF2Bε being the catalytic one), eIF2B has always been considered an αßγδε heteropentamer. We have analyzed the subunit interactions within mammalian eIF2B by using a combination of mass spectrometry and in vivo studies of overexpressed complexes to gain further insight into the subunit arrangement of the complex. Our data reveal that eIF2B is actually decameric, a dimer of eIF2B(ßγδε) tetramers stabilized by 2 copies of eIF2Bα. We also demonstrate a pivotal role for eIF2Bδ in the formation of eIF2B(ßγδε) tetramers. eIF2B(αßγδε)2 decamers show greater binding to eIF2 than to eIF2B(ßγδε) tetramers, which may underlie the increased activity of the former. We examined the levels of eIF2B subunits in a panel of different mouse tissues and identified different levels of eIF2B subunits, particularly eIF2Bα, which implies heterogeneity in the cellular proportions of eIF2B(αßγδε) and eIF2B(ßγδε) complexes, with important implications for the regulation of translation in individual cell types.


Asunto(s)
Factor 2B Eucariótico de Iniciación/química , Regulación de la Expresión Génica , Secuencia de Aminoácidos , Animales , Catálisis , Citoplasma/metabolismo , Factor 2B Eucariótico de Iniciación/metabolismo , Células HEK293 , Células HeLa , Humanos , Espectrometría de Masas , Ratones , Datos de Secuencia Molecular , Mutación , Plásmidos/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteómica , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
20.
J Mol Biol ; 426(1): 71-83, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24055699

RESUMEN

Bacterial enhancer binding proteins (bEBPs) are transcription activators that belong to the AAA(+) protein family. They form higher-order self-assemblies to regulate transcription initiation at stress response and pathogenic promoters. The precise mechanism by which these ATPases utilize ATP binding and hydrolysis energy to remodel their substrates remains unclear. Here we employed mass spectrometry of intact complexes to investigate subunit dynamics and nucleotide occupancy of the AAA(+) domain of one well-studied bEBP in complex with its substrate, the σ(54) subunit of RNA polymerase. Our results demonstrate that the free AAA(+) domain undergoes significant changes in oligomeric states and nucleotide occupancy upon σ(54) binding. Such changes likely correlate with one transition state of ATP and are associated with an open spiral ring formation that is vital for asymmetric subunit function and interface communication. We confirmed that the asymmetric subunit functionality persists for open promoter complex formation using single-chain forms of bEBP lacking the full complement of intact ATP hydrolysis sites. Outcomes reconcile low- and high-resolution structures and yield a partial sequential ATP hydrolysis model for bEBPs.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Nucleótidos/metabolismo , ARN Polimerasa Sigma 54/metabolismo , Transactivadores/metabolismo , Adenosina Trifosfatasas/química , Espectrometría de Masas , Modelos Biológicos , Nucleótidos/química , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Polimerasa Sigma 54/química , Transactivadores/química , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...