Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(30): e2404357, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38727713

RESUMEN

Linear gold complexes of the "carbene-metal-amide" (CMA) type are prepared with a rigid benzoguanidine amide donor and various carbene ligands. These complexes emit in the deep-blue range at 424 and 466 nm with 100% quantum yields in all media. The deep-blue thermally activates delayed fluorescence originates from a charge transfer state with an excited state lifetime as low as 213 ns, resulting in fast radiative rates of 4.7 × 106 s-1. The high thermal and photo-stability of these carbene-metal-amide (CMA) materials enabled the authors to fabricate highly energy-efficient organic light-emitting diodes (OLED) in host-guest architectures. Deep-blue OLED devices with electroluminescence at 416 and 457 nm with practical external quantum efficiencies of up to 23% at 100 cd m-2 with excellent color coordinates CIE (x; y) = 0.16; 0.07 and 0.17; 0.18 are reported. The operating stability of these OLEDs is the longest reported to date (LT50 = 1 h) for deep-blue CMA emitters, indicating a high promise for further development of blue OLED devices. These findings inform the molecular design strategy and correlation between delayed luminescence with high radiative rates and CMA OLED device operating stability.

2.
Adv Mater ; 36(30): e2402790, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38819637

RESUMEN

Spin triplet exciton formation sets limits on technologies using organic semiconductors that are confined to singlet-triplet photophysics. In contrast, excitations in the spin doublet manifold in organic radical semiconductors can show efficient luminescence. Here the dynamics of the spin allowed process of intermolecular energy transfer from triplet to doublet excitons are explored. A carbene-metal-amide (CMA-CF3) is employed as a model triplet donor host, since following photoexcitation it undergoes extremely fast intersystem crossing to generate a population of triplet excitons within 4 ps. This enables a foundational study for tracking energy transfer from triplets to a model radical semiconductor, TTM-3PCz. Over 74% of all radical luminescence originates from the triplet channel in this system under photoexcitation. It is found that intermolecular triplet-to-doublet energy transfer can occur directly and rapidly, with 12% of triplet excitons transferring already on sub-ns timescales. This enhanced triplet harvesting mechanism is utilized in efficient near-infrared organic light-emitting diodes, which can be extended to other opto-electronic and -spintronic technologies by radical-based spin control in molecular semiconductors.

3.
Adv Mater ; 35(45): e2303666, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37684741

RESUMEN

Organic radicals have been of interest due to their potential to replace nonradical-based organic emitters, especially for deep-red/near-infrared (NIR) electroluminescence (EL), based on the spin-allowed doublet fluorescence. However, the performance of the radical-based EL devices is limited by low carrier mobility which causes a large efficiency roll-off at high current densities. Here, highly efficient and bright doublet EL devices are reported by combining a thermally activated delayed fluorescence (TADF) host that supports both electron and hole transport and a tris(2,4,6-trichlorophenyl)methyl-based radical emitter. Steady-state and transient photophysical studies reveal the optical signatures of doublet luminescence mechanisms arising from both host and guest photoexcitation. The host system presented here allows balanced hole and electron currents, and a high maximum external quantum efficiency (EQE) of 17.4% at 707 nm peak emission with substantially improved efficiency roll-off is reported: over 70% of the maximum EQE (12.2%) is recorded at 10 mA cm-2 , and even at 100 mA cm-2 , nearly 50% of the maximum EQE (8.4%) is maintained. This is an important step in the practical application of organic radicals to NIR light-emitting devices.

4.
Nature ; 620(7974): 538-544, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37587296

RESUMEN

Molecules present a versatile platform for quantum information science1,2 and are candidates for sensing and computation applications3,4. Robust spin-optical interfaces are key to harnessing the quantum resources of materials5. To date, carbon-based candidates have been non-luminescent6,7, which prevents optical readout via emission. Here we report organic molecules showing both efficient luminescence and near-unity generation yield of excited states with spin multiplicity S > 1. This was achieved by designing an energy resonance between emissive doublet and triplet levels, here on covalently coupled tris(2,4,6-trichlorophenyl) methyl-carbazole radicals and anthracene. We observed that the doublet photoexcitation delocalized onto the linked acene within a few picoseconds and subsequently evolved to a pure high-spin state (quartet for monoradical, quintet for biradical) of mixed radical-triplet character near 1.8 eV. These high-spin states are coherently addressable with microwaves even at 295 K, with optical readout enabled by reverse intersystem crossing to emissive states. Furthermore, for the biradical, on return to the ground state the previously uncorrelated radical spins either side of the anthracene shows strong spin correlation. Our approach simultaneously supports a high efficiency of initialization, spin manipulations and light-based readout at room temperature. The integration of luminescence and high-spin states creates an organic materials platform for emerging quantum technologies.

5.
Nat Commun ; 14(1): 4147, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438369

RESUMEN

Neutral π-radicals have potential for use as light emitters in optoelectronic devices due to the absence of energetically low-lying non-emissive states. Here, we report a defect-free synthetic methodology via mesityl substitution at the para-positions of tris(2,4,6-trichlorophenyl)methyl radical. These materials reveal a number of novel optoelectronic properties. Firstly, mesityl substituted radicals show strongly enhanced photoluminescence arising from symmetry breaking in the excited state. Secondly, photoexcitation of thin films of 8 wt% radical in 4,4'-bis(carbazol-9-yl)-1,1'-biphenyl host matrix produces long lived (in the order of microseconds) intermolecular charge transfer states, following hole transfer to the host, that can show unexpectedly efficient red-shifted emission. Thirdly, covalent attachment of carbazole into the mesitylated radical gives very high photoluminescence yield of 93% in 4,4'-bis(carbazol-9-yl)-1,1'-biphenyl films and light-emitting diodes with maximum external quantum efficiency of 28% at a wavelength of 689 nm. Fourthly, a main-chain copolymer of the mesitylated radical and 9,9-dioctyl-9H-fluorene shows red-shifted emission beyond 800 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...