Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
J Biomech Eng ; 146(10)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38652602

RESUMEN

Ischemic mitral regurgitation (IMR) occurs from incomplete coaptation of the mitral valve (MV) after myocardial infarction (MI), typically worsened by continued remodeling of the left ventricular (LV). The importance of LV remodeling is clear as IMR is induced by the post-MI dual mechanisms of mitral annular dilation and leaflet tethering from papillary muscle (PM) distension via the MV chordae tendineae (MVCT). However, the detailed etiology of IMR remains poorly understood, in large part due to the complex interactions of the MV and the post-MI LV remodeling processes. Given the patient-specific anatomical complexities of the IMR disease processes, simulation-based approaches represent an ideal approach to improve our understanding of this deadly disease. However, development of patient-specific models of left ventricle-mitral valve (LV-MV) interactions in IMR are complicated by the substantial variability and complexity of the MR etiology itself, making it difficult to extract underlying mechanisms from clinical data alone. To address these shortcomings, we developed a detailed ovine LV-MV finite element (FE) model based on extant comprehensive ovine experimental data. First, an extant ovine LV FE model (Sci. Rep. 2021 Jun 29;11(1):13466) was extended to incorporate the MV using a high fidelity ovine in vivo derived MV leaflet geometry. As it is not currently possible to image the MVCT in vivo, a functionally equivalent MVCT network was developed to create the final LV-MV model. Interestingly, in pilot studies, the MV leaflet strains did not agree well with known in vivo MV leaflet strain fields. We then incorporated previously reported MV leaflet prestrains (J. Biomech. Eng. 2023 Nov 1;145(11):111002) in the simulations. The resulting LV-MV model produced excellent agreement with the known in vivo ovine MV leaflet strains and deformed shapes in the normal state. We then simulated the effects of regional acute infarctions of varying sizes and anatomical locations by shutting down the local myocardial contractility. The remaining healthy (noninfarcted) myocardium mechanical behaviors were maintained, but allowed to adjust their active contractile patterns to maintain the prescribed pressure-volume loop behaviors in the acute post-MI state. For all cases studied, the LV-MV simulation demonstrated excellent agreement with known LV and MV in vivo strains and MV regurgitation orifice areas. Infarct location was shown to play a critical role in resultant MV leaflet strain fields. Specifically, extensional deformations of the posterior leaflets occurred in the posterobasal and laterobasal infarcts, while compressive deformations of the anterior leaflet were observed in the anterobasal infarct. Moreover, the simulated posterobasal infarct induced the largest MV regurgitation orifice area, consistent with experimental observations. The present study is the first detailed LV-MV simulation that reveals the important role of MV leaflet prestrain and functionally equivalent MVCT for accurate predictions of LV-MV interactions. Importantly, the current study further underscored simulation-based methods in understanding MV function as an integral part of the LV.


Asunto(s)
Modelos Animales de Enfermedad , Análisis de Elementos Finitos , Ventrículos Cardíacos , Insuficiencia de la Válvula Mitral , Infarto del Miocardio , Animales , Insuficiencia de la Válvula Mitral/fisiopatología , Ovinos , Infarto del Miocardio/fisiopatología , Ventrículos Cardíacos/fisiopatología , Válvula Mitral/fisiopatología , Válvula Mitral/patología , Simulación por Computador , Fenómenos Biomecánicos
2.
Cardiovasc Eng Technol ; 14(5): 677-693, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37670097

RESUMEN

PURPOSE: Mitral regurgitation (MR) is a highly prevalent and deadly cardiac disease characterized by improper mitral valve (MV) leaflet coaptation. Among the plethora of available treatment strategies, the MitraClip is an especially safe option, but optimizing its long-term efficacy remains an urgent challenge. METHODS: We applied our noninvasive image-based strain computation pipeline [1] to intraoperative transesophageal echocardiography datasets taken from ten patients undergoing MitraClip repair, spanning a range of MR etiologies and MitraClip configurations. We then analyzed MV leaflet strains before and after MitraClip implementation to develop a better understanding of (1) the pre-operative state of human regurgitant MV, and (2) the MitraClip's impact on the MV leaflet deformations. RESULTS: The MV pre-operative strain fields were highly variable, underscoring both the heterogeneity of the MR in the patient population and the need for patient-specific treatment approaches. Similarly, there were no consistent overall post-operative strain patterns, although the average A2 segment radial strain difference between pre- and post-operative states was consistently positive. In contrast, the post-operative strain fields were better correlated to their respective pre-operative strain fields than to the inter-patient post-operative strain fields. This quantitative result implies that the patient specific pre-operative state of the MV guides its post-operative deformation, which suggests that the post-operative state can be predicted using pre-operative data-derived modelling alone. CONCLUSIONS: The pre-operative MV leaflet strain patterns varied considerably across the range of MR disease states and after MitraClip repair. Despite large inter-patient heterogeneity, the post-operative deformation appears principally dictated by the pre-operative deformation state. This novel finding suggests that though the variation in MR functional state and MitraClip-induced deformation were substantial, the post-operative state can be predicted from the pre-operative data alone. This study suggests that, with use of larger patient cohort and corresponding long-term outcomes, quantitative predictive factors of MitraClip durability can be identified.


Asunto(s)
Ecocardiografía Tridimensional , Implantación de Prótesis de Válvulas Cardíacas , Insuficiencia de la Válvula Mitral , Humanos , Válvula Mitral/diagnóstico por imagen , Válvula Mitral/cirugía , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/cirugía , Ecocardiografía , Resultado del Tratamiento , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos
3.
J Biomech Eng ; 145(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37382900

RESUMEN

While mitral valve (MV) repair remains the preferred clinical option for mitral regurgitation (MR) treatment, long-term outcomes remain suboptimal and difficult to predict. Furthermore, pre-operative optimization is complicated by the heterogeneity of MR presentations and the multiplicity of potential repair configurations. In the present work, we established a patient-specific MV computational pipeline based strictly on standard-of-care pre-operative imaging data to quantitatively predict the post-repair MV functional state. First, we established human mitral valve chordae tendinae (MVCT) geometric characteristics obtained from five CT-imaged excised human hearts. From these data, we developed a finite-element model of the full patient-specific MV apparatus that included MVCT papillary muscle origins obtained from both the in vitro study and the pre-operative three-dimensional echocardiography images. To functionally tune the patient-specific MV mechanical behavior, we simulated pre-operative MV closure and iteratively updated the leaflet and MVCT prestrains to minimize the mismatch between the simulated and target end-systolic geometries. Using the resultant fully calibrated MV model, we simulated undersized ring annuloplasty (URA) by defining the annular geometry directly from the ring geometry. In three human cases, the postoperative geometries were predicted to 1 mm of the target, and the MV leaflet strain fields demonstrated close agreement with noninvasive strain estimation technique targets. Interestingly, our model predicted increased posterior leaflet tethering after URA in two recurrent patients, which is the likely driver of long-term MV repair failure. In summary, the present pipeline was able to predict postoperative outcomes from pre-operative clinical data alone. This approach can thus lay the foundation for optimal tailored surgical planning for more durable repair, as well as development of mitral valve digital twins.


Asunto(s)
Enfermedades de las Válvulas Cardíacas , Insuficiencia de la Válvula Mitral , Humanos , Válvula Mitral/diagnóstico por imagen , Válvula Mitral/cirugía , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/cirugía , Músculos Papilares , Cuerdas Tendinosas
4.
Cardiovasc Res ; 119(1): 302-315, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35020813

RESUMEN

AIMS: Bioprosthetic heart valves (BHVs), made from glutaraldehyde-fixed heterograft materials, are subject to more rapid structural valve degeneration (SVD) in paediatric and young adult patients. Differences in blood biochemistries and propensity for disease accelerate SVD in these patients, which results in multiple re-operations with compounding risks. The goal of this study is to investigate the mechanisms of BHV biomaterial degeneration and present models for studying SVD in young patients and juvenile animal models. METHODS AND RESULTS: We studied SVD in clinical BHV explants from paediatric and young adult patients, juvenile sheep implantation model, rat subcutaneous implants, and an ex vivo serum incubation model. BHV biomaterials were analysed for calcification, collagen microstructure (alignment and crimp), and crosslinking density. Serum markers of calcification and tissue crosslinking were compared between young and adult subjects. We demonstrated that immature subjects were more susceptible to calcification, microstructural changes, and advanced glycation end products formation. In vivo and ex vivo studies comparing immature and mature subjects mirrored SVD in clinical observations. The interaction between host serum and BHV biomaterials leads to significant structural and biochemical changes which impact their functions. CONCLUSIONS: There is an increased risk for accelerated SVD in younger subjects, both experimental animals and patients. Increased calcification, altered collagen microstructure with loss of alignment and increased crimp periods, and increased crosslinking are three main characteristics in BHV explants from young subjects leading to SVD. Together, our studies establish a basis for assessing the increased susceptibility of BHV biomaterials to accelerated SVD in young patients.


Asunto(s)
Bioprótesis , Calcinosis , Prótesis Valvulares Cardíacas , Animales , Ratas , Ovinos , Válvulas Cardíacas , Materiales Biocompatibles , Colágeno
5.
Ann Biomed Eng ; 51(1): 71-87, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36030332

RESUMEN

Left ventricular myocardial infarction (MI) has broad and debilitating effects on cardiac function. In many cases, MI leads to ischemic mitral regurgitation (IMR), a condition characterized by incompetency of the mitral valve (MV). IMR has many deleterious effects as well as a high mortality rate. While various clinical treatments for IMR exist, success of these procedures remains limited, in large part because IMR dramatically alters the geometry and function of the MV in ways that are currently not well understood. Previous investigations of post-MI MV remodeling have elucidated that MV tissues have a significant ability to undergo a form of permanent inelastic deformations in the first phase of the post-MI period. These changes appear to be attributable to the altered loading and boundary conditions on the MV itself, as opposed to an independent pathophysiological process. Mechanistically, these results suggest that the MV mostly responds passively to MI during the first 8 weeks post-MI by undergoing a permanent deformation. In the present study, we developed the first computational model of this post-MI MV remodeling process, which we term "mitral valve plasticity." Integrating methodologies and insights from previous studies of in vivo ovine MV function, image-based patient-specific model development, and post-MI MV adaptation, we constructed a representative geometric model of a pre-MI MV. We then performed finite element simulations of the entire MV apparatus under time-dependent boundary conditions and accounting for changes to material properties equivalent to those observed 0-8 weeks post-MI. Our results suggest that during this initial period of adaptation, the MV response to MI can be accurately modeled using a soft tissue plasticity approach, similar to permanent set frameworks that have been applied previously in the context of exogenously crosslinked tissues.


Asunto(s)
Insuficiencia de la Válvula Mitral , Infarto del Miocardio , Ovinos , Humanos , Animales , Válvula Mitral , Ventrículos Cardíacos , Simulación por Computador
6.
JTCVS Tech ; 16: 49-59, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36510522

RESUMEN

Objectives: Long-term outcomes of mitral valve repair procedures to correct ischemic mitral regurgitation remain unpredictable, due to an incomplete understanding of the disease process and the inability to reliably quantify the coaptation zone using echocardiography. Our objective was to quantify patient-specific mitral valve coaptation behavior from clinical echocardiographic images obtained before and after repair to assess coaptation restoration and its relationship with long-term repair durability. Methods: To circumvent the limitations of clinical imaging, we applied a simulation-based shape-matching technique that allowed high-fidelity reconstructions of the complete mitral valve in the systolic configuration. We then applied this method to an extant database of human regurgitant mitral valves before and after undersized ring annuloplasty to quantify the effect of the repair on mitral valve coaptation geometry. Results: Our method was able to successfully resolve the coaptation zone into distinct contacting and redundant regions. Results indicated that in patients whose regurgitation recurred 6 months postrepair, both the contacting and redundant regions were larger immediately postrepair compared with patients with no recurrence (P < .05), even when normalized to account for generally larger recurrent valves. Conclusions: Although increasing leaflet coaptation area is an intuitively obvious way to improve long-term repair durability, this study has implied that this may not be a reliable target for mitral valve repair. This study underscores the importance of a rigorous understanding of the consequences of repair techniques on mitral valve behavior, as well as a patient-specific approach to ischemic mitral regurgitation treatment within the context of mitral valve and left ventricle function.

7.
Sci Rep ; 12(1): 18012, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289435

RESUMEN

Each year, more than 40,000 people undergo mitral valve (MV) repair surgery domestically to treat regurgitation caused by myocardial infarction (MI). Although continual MV tissue remodelling following repair is believed to be a major contributor to regurgitation recurrence, the effects of the post-MI state on MV remodelling remain poorly understood. This lack of understanding limits our ability to predict the remodelling of the MV both post-MI and post-surgery to facilitate surgical planning. As a necessary first step, the present study was undertaken to noninvasively quantify the effects of MI on MV remodelling in terms of leaflet geometry and deformation. MI was induced in eight adult Dorset sheep, and real-time three-dimensional echocardiographic (rt-3DE) scans were collected pre-MI as well as at 0, 4, and 8 weeks post-MI. A previously validated image-based morphing pipeline was used to register corresponding open- and closed-state scans and extract local in-plane strains throughout the leaflet surface at systole. We determined that MI induced permanent changes in leaflet dimensions in the diastolic configuration, which increased with time to 4 weeks, then stabilised. MI substantially affected the systolic shape of the MV, and the range of stretch experienced by the MV leaflet at peak systole was substantially reduced when referred to the current time-point. Interestingly, when we referred the leaflet strains to the pre-MI configuration, the systolic strains remained very similar throughout the post-MI period. Overall, we observed that post-MI ventricular remodeling induced permanent changes in the MV leaflet shape. This predominantly affected the MV's diastolic configuration, leading in turn to a significant decrease in the range of stretch experienced by the leaflet when referenced to the current diastolic configuration. These findings are consistent with our previous work that demonstrated increased plastic (i.e. non-recoverable) leaflet deformations post-MI, that was completely accounted for by the associated changes in collagen fiber structure. Moreover, we demonstrated through noninvasive methods that the state of the MV leaflet can elucidate the progression and extent of MV adaptation following MI and is thus highly relevant to the design of current and novel patient specific minimally invasive surgical repair strategies.


Asunto(s)
Insuficiencia de la Válvula Mitral , Infarto del Miocardio , Ovinos , Animales , Válvula Mitral/diagnóstico por imagen , Colágeno , Plásticos
9.
Med Image Anal ; 80: 102513, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35772323

RESUMEN

There is an urgent unmet need to develop a fully-automated image-based left ventricle mitral valve analysis tool to support surgical decision making for ischemic mitral regurgitation patients. This requires an automated tool for segmentation and modeling of the left ventricle and mitral valve from immediate pre-operative 3D transesophageal echocardiography. Previous works have presented methods for semi-automatically segmenting and modeling the mitral valve, but do not include the left ventricle and do not avoid self-intersection of the mitral valve leaflets during shape modeling. In this study, we develop and validate a fully automated algorithm for segmentation and shape modeling of the left ventricular mitral valve complex from pre-operative 3D transesophageal echocardiography. We performed a 3-fold nested cross validation study on two datasets from separate institutions to evaluate automated segmentations generated by nnU-net with the expert manual segmentation which yielded average overall Dice scores of 0.82±0.03 (set A), 0.87±0.08 (set B) respectively. A deformable medial template was subsequently fitted to the segmentation to generate shape models. Comparison of shape models to the manual and automatically generated segmentations resulted in an average Dice score of 0.93-0.94 and 0.75-0.81 for the left ventricle and mitral valve, respectively. This is a substantial step towards automatically analyzing the left ventricle mitral valve complex in the operating room.


Asunto(s)
Ecocardiografía Tridimensional , Insuficiencia de la Válvula Mitral , Ecocardiografía Tridimensional/métodos , Ecocardiografía Transesofágica/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/cirugía
10.
Ann Biomed Eng ; 50(1): 1-15, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34993699

RESUMEN

The clinical benefit of patient-specific modeling of heart valve disease remains an unrealized goal, often a result of our limited understanding of the in vivo milieu. This is particularly true in assessing bicuspid aortic valve (BAV) disease, the most common cardiac congenital defect in humans, which leads to premature and severe aortic stenosis or insufficiency (AS/AI). However, assessment of BAV risk for AS/AI on a patient-specific basis is hampered by the substantial degree of anatomic and functional variations that remain largely unknown. The present study was undertaken to utilize a noninvasive computational pipeline ( https://doi.org/10.1002/cnm.3142 ) that directly yields local heart valve leaflet deformation information using patient-specific real-time three-dimensional echocardiographic imaging (rt-3DE) data. Imaging data was collected for patients with normal tricuspid aortic valve (TAV, [Formula: see text]) and those with BAV ([Formula: see text] with fused left and right coronary leaflets and [Formula: see text] with fused right and non-coronary leaflets), from which the medial surface of each leaflet was extracted. The resulting deformation analysis resulted in, for the first time, quantified differences between the in vivo functional deformations of the TAV and BAV leaflets. Our approach was able to capture the complex, heterogeneous surface deformation fields in both TAV and BAV leaflets. We were able to identify and quantify differences in stretch patterns between leaflet types, and found in particular that stretches experienced by BAV leaflets during closure differ from those of TAV leaflets in terms of both heterogeneity as well as overall magnitude. Deformation is a key parameter in the clinical assessment of valvular function, and serves as a direct means to determine regional variations in structure and function. This study is an essential step toward patient-specific assessment of BAV based on correlating leaflet deformation and AS/AI progression, as it provides a means for assessing patient-specific stretch patterns.


Asunto(s)
Estenosis de la Válvula Aórtica , Enfermedad de la Válvula Aórtica Bicúspide , Enfermedades de las Válvulas Cardíacas , Aorta , Válvula Aórtica/diagnóstico por imagen , Enfermedad de la Válvula Aórtica Bicúspide/diagnóstico por imagen , Enfermedades de las Válvulas Cardíacas/diagnóstico por imagen , Humanos , Válvula Tricúspide
11.
Magn Reson Med ; 87(1): 323-336, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34355815

RESUMEN

PURPOSE: Magnetic susceptibility (Δχ) alterations have shown association with myocardial infarction (MI) iron deposition, yet there remains limited understanding of the relationship between relaxation rates and susceptibility or the effect of magnetic field strength. Hence, Δχ and R2∗ in MI were compared at 3T and 7T. METHODS: Subacute MI was induced by coronary artery ligation in male Yorkshire swine. 3D multiecho gradient echo imaging was performed at 1-week postinfarction at 3T and 7T. Quantitative susceptibility mapping images were reconstructed using a morphology-enabled dipole inversion. R2∗ maps and quantitative susceptibility mapping were generated to assess the relationship between R2∗ , Δχ, and field strength. Infarct histopathology was investigated. RESULTS: Magnetic susceptibility was not significantly different across field strengths (7T: 126.8 ± 41.7 ppb; 3T: 110.2 ± 21.0 ppb, P = NS), unlike R2∗ (7T: 247.0 ± 14.8 Hz; 3T: 106.1 ± 6.5 Hz, P < .001). Additionally, infarct Δχ and R2∗ were significantly higher than remote myocardium. Magnetic susceptibility at 7T versus 3T had a significant association (ß = 1.02, R2 = 0.82, P < .001), as did R2∗ (ß = 2.35, R2 = 0.98, P < .001). Infarct pathophysiology and iron deposition were detected through histology and compared with imaging findings. CONCLUSION: R2∗ showed dependence and Δχ showed independence of field strength. Histology validated the presence of iron and supported imaging findings.


Asunto(s)
Imagen por Resonancia Magnética , Daño por Reperfusión Miocárdica , Animales , Hierro , Fenómenos Magnéticos , Magnetismo , Masculino , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Porcinos
12.
J Cardiothorac Surg ; 16(1): 295, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34629098

RESUMEN

BACKGROUND: Transcatheter mitral valve replacement (TMVR) is a challenging, but promising minimally invasive treatment option for patients with mitral valve disease. Depending on the anchoring mechanism, complications such as mitral leaflet or chordal disruption, aortic valve disruption or left ventricular outflow tract obstruction may occur. Supra-annular devices only anchor at the left atrial (LA) level with a low risk of these complications. For development of transcatheter valves based on LA anchoring, animal feasibility studies are required. In this study we sought to describe LA systolic and diastolic geometry in an ovine ischemic mitral regurgitation (IMR) model using magnetic resonance imaging (MRI) and echocardiography in order to facilitate future research focusing on TMVR device development for (I)MR with LA anchoring mechanisms. METHODS: A group of 10 adult male Dorsett sheep underwent a left lateral thoracotomy. Posterolateral myocardial infarction was created by ligation of the left circumflex coronary artery, the obtuse marginal and diagonal branches. MRI and echocardiography were performed at baseline and 8 weeks after myocardial infarction (MI). RESULTS: Six animals survived to 8 weeks follow-up. All animals had grade 2 + or higher IMR 8 weeks post-MI. All LA geometric parameters did not change significantly 8 weeks post-MI compared to baseline. Diastolic and systolic interpapillary muscle distance increased significantly 8 weeks post-MI. CONCLUSIONS: Systolic and diastolic LA geometry do not change significantly in the presence of grade 2 + or higher IMR 8 weeks post-MI. These findings help facilitate future tailored TMVR device development with LA anchoring mechanisms.


Asunto(s)
Insuficiencia de la Válvula Mitral , Infarto del Miocardio , Animales , Ecocardiografía , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/cirugía , Humanos , Masculino , Válvula Mitral/diagnóstico por imagen , Válvula Mitral/cirugía , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/etiología , Insuficiencia de la Válvula Mitral/cirugía , Ovinos
13.
Sci Rep ; 11(1): 13466, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188138

RESUMEN

Myocardial infarction (MI) rapidly impairs cardiac contractile function and instigates maladaptive remodeling leading to heart failure. Patient-specific models are a maturing technology for developing and determining therapeutic modalities for MI that require accurate descriptions of myocardial mechanics. While substantial tissue volume reductions of 15-20% during systole have been reported, myocardium is commonly modeled as incompressible. We developed a myocardial model to simulate experimentally-observed systolic volume reductions in an ovine model of MI. Sheep-specific simulations of the cardiac cycle were performed using both incompressible and compressible tissue material models, and with synchronous or measurement-guided contraction. The compressible tissue model with measurement-guided contraction gave best agreement with experimentally measured reductions in tissue volume at peak systole, ventricular kinematics, and wall thickness changes. The incompressible model predicted myofiber peak contractile stresses approximately double the compressible model (182.8 kPa, 107.4 kPa respectively). Compensatory changes in remaining normal myocardium with MI present required less increase of contractile stress in the compressible model than the incompressible model (32.1%, 53.5%, respectively). The compressible model therefore provided more accurate representation of ventricular kinematics and potentially more realistic computed active contraction levels in the simulated infarcted heart. Our findings suggest that myocardial compressibility should be incorporated into future cardiac models for improved accuracy.


Asunto(s)
Modelos Cardiovasculares , Contracción Miocárdica , Infarto del Miocardio/fisiopatología , Miocardio , Animales , Modelos Animales de Enfermedad , Ovinos
14.
Arterioscler Thromb Vasc Biol ; 41(6): 2049-2062, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33827255
15.
JTCVS Open ; 5: 48-60, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36003177

RESUMEN

Background: The exact geometric pathogenesis of leaflet tethering in ischemic mitral regurgitation (IMR) and the relative contribution of each component of the mitral valve complex (MVC) remain largely unknown. In this study, we sought to further elucidate mitral valve (MV) leaflet remodeling and papillary muscle dynamics in an ovine model of IMR with magnetic resonance imaging (MRI) and 3-dimensional echocardiography (3DE). Methods: Multimodal imaging combining 3DE and MRI was used to analyze the MVC at baseline, 30 minutes post-myocardial infarction (MI), and 12 weeks post-MI in ovine IMR models. Advanced 3D imaging software was used to trace the MVC from each modality, and the tracings were verified against resected specimens. Results: 3DE MV remodeling was regionally heterogenous and observed primarily in the anterior leaflet, with significant increases in surface area, especially in A2 and A3. The posterior leaflet was significantly shortened in P2 and P3. Mean posteromedial papillary muscle (PMPM) volume was decreased from 1.9 ± 0.2 cm3 at baseline to 0.9 ± 0.3 cm3 at 12 weeks post-MI (P < .05). At 12 weeks post-MI, the PMPM was predominately displaced horizontally and outward along the intercommissural axis with minor apical displacement. The subvalvular contribution to tethering is a combination of unilateral movement, outward displacement, and degeneration of the PMPM. These findings have led to a proposed new framework for characterizing PMPM dynamics in IMR. Conclusions: This study provides new insights into the complex interrelated and regionally heterogenous valvular and subvalvular mechanisms involved in the geometric pathogenesis of IMR tethering.

16.
Ann Thorac Surg ; 112(4): 1317-1324, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32987018

RESUMEN

BACKGROUND: Aortic root evaluation is conventionally based on 2-dimensional measurements at a single phase of the cardiac cycle. This work presents an image analysis method for assessing dynamic 3-dimensional changes in the aortic root of minimally calcified bicuspid aortic valves (BAVs) with and without moderate to severe aortic regurgitation. METHODS: The aortic root was segmented over the full cardiac cycle in 3-dimensional transesophageal echocardiographic images acquired from 19 patients with minimally calcified BAVs and from 16 patients with physiologically normal tricuspid aortic valves (TAVs). The size and dynamics of the aortic root were assessed using the following image-derived measurements: absolute mean root volume and mean area at the level of the ventriculoaortic junction, sinuses of Valsalva, and sinotubular junction, as well as normalized root volume change and normalized area change of the ventriculoaortic junction, sinuses of Valsalva, and sinotubular junction over the cardiac cycle. RESULTS: Normalized volume change over the cardiac cycle was significantly greater in BAV roots with moderate to severe regurgitation than in normal TAV roots and in BAV roots with no or mild regurgitation. Aortic root dynamics were most significantly different at the mid-level of the sinuses of Valsalva in BAVs with moderate to severe regurgitation than in competent TAVs and BAVs. CONCLUSIONS: Echocardiographic reconstruction of the aortic root demonstrates significant differences in dynamics of BAV roots with moderate to severe regurgitation relative to physiologically normal TAVs and competent BAVs. This finding may have implications for risk of future dilatation, dissection, or rupture, which warrant further investigation.


Asunto(s)
Aorta/diagnóstico por imagen , Aorta/fisiopatología , Insuficiencia de la Válvula Aórtica/fisiopatología , Enfermedad de la Válvula Aórtica Bicúspide/fisiopatología , Ecocardiografía Tridimensional , Ecocardiografía Transesofágica , Calcificación Vascular/fisiopatología , Adulto , Anciano , Insuficiencia de la Válvula Aórtica/complicaciones , Enfermedad de la Válvula Aórtica Bicúspide/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Calcificación Vascular/complicaciones
17.
PLoS One ; 15(12): e0244286, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33373391

RESUMEN

BACKGROUND: Segmented cine cardiac MRI combines data from multiple heartbeats to achieve high spatiotemporal resolution cardiac images, yet predefined k-space segmentation trajectories can lead to suboptimal k-space sampling. In this work, we developed and evaluated an autonomous and closed-loop control system for radial k-space sampling (ARKS) to increase sampling uniformity. METHODS: The closed-loop system autonomously selects radial k-space sampling trajectory during live segmented cine MRI and attempts to optimize angular sampling uniformity by selecting views in regions of k-space that were not previously well-sampled. Sampling uniformity and the ability to detect cardiac phase in vivo was assessed using ECG data acquired from 10 normal subjects in an MRI scanner. The approach was then implemented with a fast gradient echo sequence on a whole-body clinical MRI scanner and imaging was performed in 4 healthy volunteers. The closed-loop k-space trajectory was compared to random, uniformly distributed and golden angle view trajectories via measurement of k-space uniformity and the point spread function. Lastly, an arrhythmic dataset was used to evaluate a potential application of the approach. RESULTS: The autonomous trajectory increased k-space sampling uniformity by 15±7%, main lobe point spread function (PSF) signal intensity by 6±4%, and reduced ringing relative to golden angle sampling. When implemented, the autonomous pulse sequence prescribed radial view angles faster than the scan TR (0.98 ± 0.01 ms, maximum = 1.38 ms) and increased k-space sampling mean uniformity by 10±11%, decreased uniformity variability by 44±12%, and increased PSF signal ratio by 6±6% relative to golden angle sampling. CONCLUSION: The closed-loop approach enables near-uniform radial sampling in a segmented acquisition approach which was higher than predetermined golden-angle radial sampling. This can be utilized to increase the sampling or decrease the temporal footprint of an acquisition and the closed-loop framework has the potential to be applied to patients with complex heart rhythms.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Cinemagnética/métodos , Adulto , Algoritmos , Femenino , Voluntarios Sanos , Corazón/fisiología , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino
18.
Acta Biomater ; 114: 296-306, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32739434

RESUMEN

Expansion of myocardium after myocardial infarction (MI) has long been identified as the primary mechanism that drives adverse left ventricular (LV) remodeling towards heart failure and death. Direct injection of hydrogels into the myocardium to mechanically constrain the infarct has demonstrated promise in limiting its remodeling and expansion. Despite early successes, there remain open questions in the determination of optimal hydrogel therapies, key application characteristics for which include injected polymer volume, stiffness, and spatial placement. Addressing these questions is complicated by the substantial variations in infarct type and extent, as well as limited understanding of the underlying mechanisms. Herein, we present an investigation on how hydrogel inclusions affect the effective tissue-level stiffness and strain fields in myocardium using full three-dimensional (3D) finite element simulations at early and late post-MI time points. We calibrated our simulations to triaxial mechanical and structural measurements of cuboidal LV myocardial specimens of post-infarcted myocardium, 0 and 4 weeks post-MI, injected with a dual-crosslinking hyaluronic acid-based hydrogel. Simulations included multiple deformation modes that spanned the anticipated physiological range in order to assess the effects of variations in inclusion size, location, and modulus on tissue-level myocardial mechanics. We observed significant local stiffening in the hydrogel-injected specimens that was highly dependent on the volume and mechanical properties of the injected hydrogel. Simulations revealed that the primary effect of the injections under physiological loading was a reduction in myocardial strain. This result suggests that hydrogel injections reduce infarct expansion by limiting the peak strains over the cardiac cycle. Overall, our study indicated that modulation of local effective tissue stiffness and corresponding strain reduction are governed by the volume and stiffness of the hydrogel, but relatively insensitive to its transmural placement. These findings provide important insights into mechanisms for ameliorating post-MI remodeling, as well as guidance for the future design of post-MI therapies.


Asunto(s)
Hidrogeles , Infarto del Miocardio , Ventrículos Cardíacos , Humanos , Hidrogeles/farmacología , Miocardio , Remodelación Ventricular
19.
Innovations (Phila) ; 15(4): 329-337, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32830572

RESUMEN

OBJECTIVE: Durability of mitral valve (MV) repair for functional mitral regurgitation (FMR) remains suboptimal. We sought to create a highly reproducible, quantitative ex vivo model of FMR that functions as a platform to test novel repair techniques. METHODS: Fresh swine hearts (n = 10) were pressurized with air to a left ventricular pressure of 120 mmHg. The left atrium was excised and the altered geometry of FMR was created by radially dilating the annulus and displacing the papillary muscle tips apically and radially in a calibrated fashion. This was continued in a graduated fashion until coaptation was exhausted. Imaging of the MV was performed with a 3-dimensional (3D) structured-light scanner, which records 3D structure, texture, and color. The model was validated using transesophageal echocardiography in patients with normal MVs and severe FMR. RESULTS: Compared to controls, the anteroposterior diameter in the FMR state increased 32% and the annular area increased 35% (P < 0.001). While the anterior annular circumference remained fixed, the posterior circumference increased by 20% (P = 0.026). The annulus became more planar and the tenting height increased 56% (9 to 14 mm, P < 0.001). The median coaptation depth significantly decreased (anterior leaflet: 5 vs 2 mm; posterior leaflet: 7 vs 3 mm, P < 0.001). The ex vivo normal and FMR models had similar characteristics as clinical controls and patients with severe FMR. CONCLUSIONS: This novel quantitative ex vivo model provides a simple, reproducible, and inexpensive benchtop representation of FMR that mimics the systolic valvular changes of patients with FMR.


Asunto(s)
Modelos Animales de Enfermedad , Insuficiencia de la Válvula Mitral/fisiopatología , Válvula Mitral/fisiopatología , Porcinos , Animales , Ecocardiografía Transesofágica , Imagenología Tridimensional , Válvula Mitral/diagnóstico por imagen , Válvula Mitral/patología , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/patología , Modelos Cardiovasculares
20.
J Cardiothorac Surg ; 15(1): 161, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616001

RESUMEN

BACKGROUND: High ischemic mitral regurgitation (IMR) recurrence rates continue to plague IMR repair with undersized ring annuloplasty. We have previously shown that pre-repair three-dimensional echocardiography (3DE) analysis is highly predictive of IMR recurrence. The objective of this study was to determine the quantitative change in 3DE annular and leaflet tethering parameters immediately after repair and to determine if intraoperative post-repair 3DE parameters would be able to predict IMR recurrence 6 months after repair. METHODS: Intraoperative pre- and post-repair transesophageal real-time 3DE was performed in 35 patients undergoing undersized ring annuloplasty for IMR. An advanced modeling algorhythm was used to assess 3D annular geometry and regional leaflet tethering. IMR recurrence (≥ grade 2) was assessed with transthoracic echocardiography 6 months after repair. RESULTS: Annuloplasty significantly reduced septolateral diameter, commissural width, annular area, and tethering volume and significantly increased all segmental tethering angles (except A2). Intraoperative post-repair annular geometry and leaflet tethering did not differ significantly between patients with recurrent IMR (n = 9) and patients with non-recurrent IMR (n = 26). No intraoperative post-repair predictors of IMR recurrence could be identified. CONCLUSIONS: Undersized ring annuloplasty changes mitral geometry acutely, exacerbates leaflet tethering, and generally fixes IMR acutely, but it does not always fix the delicate underlying chronic problem of continued left ventricular dilatation and remodeling. This may explain why pre-repair 3D valve geometry (which reflects chronic left ventricular remodeling) is highly predictive of recurrent IMR, whereas immediate post-repair 3D valve geometry (which does not completely reflect chronic left ventricular remodeling anymore) is not.


Asunto(s)
Insuficiencia de la Válvula Mitral/cirugía , Anciano , Ecocardiografía , Ecocardiografía Tridimensional , Femenino , Humanos , Masculino , Anuloplastia de la Válvula Mitral , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Isquemia Miocárdica/diagnóstico , Valor Predictivo de las Pruebas , Recurrencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA