Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 917: 170194, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38280600

RESUMEN

Rock detention structures (RDS) such as check dams, gabions, and one rock dams are commonly used to mitigate erosion impacts in dryland ephemeral stream channels. RDS increase local water infiltration and floodplain connectivity, reduce sediment transport, and enhance vegetation growth and establishment. In addition to increasing overall vegetation cover, RDS may also buffer against a cycle of vegetation growth and collapse during years of extremely variable precipitation, helping to maintain stable cover. Although widely employed by land managers, success as reported in scientific literature varies, especially with regard to RDS effects on vegetation and soil fertility. We present the results of a 10-year field experiment in southeastern Arizona, USA, designed in collaboration with local land practitioners to measure local in-channel effects of RDS. Over 10 years, cover of herbaceous vegetation (forbs and grasses) doubled from 11 % to 22 % in channels treated with RDS, but did not significantly increase in untreated control channels. Shrub cover in treated channels was significantly less variable than in control channels over time. We analyzed the complex relationships between RDS, vegetation cover, and soil fertility using structural equation modeling (SEM), which represented conditions of the tenth year alone. SEM revealed that RDS did not directly affect soil fertility, as measured by total soil nitrogen, total soil carbon, soil organic matter, microbial richness, and potential nutrient cycling capacity. Notably, SEM did not yield the same trends as temporal monitoring, possibly because our structural equation models could not capture change over time. This discrepancy highlights the need for long-term, frequent monitoring of aboveground and belowground conditions to evaluate treatment success on a management scale. Overall, installing rock detention structures in ephemeral channels in arid and semiarid regions is a low-cost, feasible way to increase channel sediment aggradation, forb, and grass cover; stabilize shrub cover; and combat dryland degradation.


Asunto(s)
Monitoreo del Ambiente , Suelo , Suelo/química , Carbono/análisis , Ríos/química , Modelos Teóricos , Ecosistema
2.
Biol Rev Camb Philos Soc ; 99(1): 295-312, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37813383

RESUMEN

Forest restoration has never been higher on policymakers' agendas. Complex and multi-dimensional arrangements across the urban-rural continuum challenge restorationists and require integrative approaches to strengthen environmental protection and increase restoration outcomes. It remains unclear if urban and rural forest restoration are moving towards or away from each other in practice and research, and whether comparing research outcomes can help stakeholders to gain a clearer understanding of the interconnectedness between the two fields. This study aims to identify the challenges and opportunities for enhancing forest restoration in both urban and rural systems by reviewing the scientific evidence, engaging with key stakeholders and using an urban-rural forest restoration framework. Using the Society for Ecological Restoration's International Principles as discussion topics, we highlight aspects of convergence and divergence between the two fields to broaden our understanding of forest restoration and promote integrative management approaches to address future forest conditions. Our findings reveal that urban and rural forest restoration have convergent and divergent aspects. We emphasise the importance of tailoring goals and objectives to specific contexts and the need to design different institutions and incentives based on the social and ecological needs and goals of stakeholders in different regions. Additionally, we discuss the challenges of achieving high levels of ecological restoration and the need to go beyond traditional ecology to plan, implement, monitor, and adaptively manage restored forests. We suggest that rivers and watersheds could serve as a common ground linking rural and urban landscapes and that forest restoration could interact with other environmental protection measures. We note the potential for expanding the creative vision associated with increasing tree-containing environments in cities to generate more diverse and resilient forest restoration outcomes in rural settings. This study underscores the value of integrative management approaches in addressing future forest conditions across the urban-rural continuum. Our framework provides valuable insights for policymakers, researchers, and decision-makers to advance the field of forest restoration and address the challenges of restoration across the urban-rural continuum. The rural-urban interface serves as a convergence point for forest restoration, and both urban and rural fields can benefit from each other's expertise.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Árboles , Ríos , Ecosistema
3.
Ecol Appl ; 33(4): e2834, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36864737

RESUMEN

Restoration in dryland ecosystems often has poor success due to low and variable water availability, degraded soil conditions, and slow plant community recovery rates. Restoration treatments can mitigate these constraints but, because treatments and subsequent monitoring are typically limited in space and time, our understanding of their applicability across broader environmental gradients remains limited. To address this limitation, we implemented and monitored a standardized set of seeding and soil surface treatments (pits, mulch, and ConMod artificial nurse plants) designed to enhance soil moisture and seedling establishment across RestoreNet, a growing network of 21 diverse dryland restoration sites in the southwestern USA over 3 years. Generally, we found that the timing of precipitation relative to seeding and the use of soil surface treatments were more important in determining seeded species emergence, survival, and growth than site-specific characteristics. Using soil surface treatments in tandem with seeding promoted up to 3× greater seedling emergence densities compared with seeding alone. The positive effect of soil surface treatments became more prominent with increased cumulative precipitation since seeding. The seed mix type with species currently found within or near a site and adapted to the historical climate promoted greater seedling emergence densities compared with the seed mix type with species from warmer, drier conditions expected to perform well under climate change. Seed mix and soil surface treatments had a diminishing effect as plants developed beyond the first season of establishment. However, we found strong effects of the initial period seeded and of the precipitation leading up to each monitoring date on seedling survival over time, especially for annual and perennial forbs. The presence of exotic species exerted a negative influence on seedling survival and growth, but not initial emergence. Our findings suggest that seeded species recruitment across drylands can generally be promoted, regardless of location, by (1) incorporation of soil surface treatments, (2) employment of near-term seasonal climate forecasts, (3) suppression of exotic species, and (4) seeding at multiple times. Taken together, these results point to a multifaceted approach to ameliorate harsh environmental conditions for improved seeding success in drylands, both now and under expected aridification.


Asunto(s)
Ecosistema , Suelo , Plantones , Plantas , Semillas
4.
Environ Manage ; 70(1): 134-145, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35487980

RESUMEN

Grasslands are essential natural and agricultural ecosystems that encompass over one-third of global lands. However, land conversion and poor management have caused losses of these systems which contributed to a 10% reduction of net primary production, a 4% increase in carbon emissions, and a potential loss of US $42 billion a year. It is, therefore, important to restore, enhance and conserve these grasslands to sustain natural plant communities and the livelihoods of those that rely on them. We installed low cost rock structures (media lunas) to assess their ability to restore grasslands by slowing water flow, reducing erosion and improving plant establishment. Our treatments included sites with small and large rock structures that were seeded with a native seed mix as well as sites with no seed or rock and sites with only seed addition. We collected summer percent cover for plants, litter, and rock and spring seedling count data. We also collected soil for nutrient, moisture, and microbial analysis. Within the first year, we found no change in plant cover between rock structures of two rock sizes. We did find, however, an increase in soil moisture, litter, fungal richness, and spring seedling germination within the rock structures, despite a historic drought. This work demonstrates that rock structures can positively impact plants and soils of grasslands even within the first year. Our results suggest that managers should seriously consider employing these low-cost structures to increase short-term plant establishment and possibly, soil health, in grasslands.


Asunto(s)
Plantones , Suelo , Sequías , Ecosistema , Pradera , Plantas
5.
Environ Manage ; 65(2): 212-219, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31838568

RESUMEN

Working rangelands and natural areas span diverse ecosystems and face both ecological and economic threats from weed invasion. Restoration practitioners and land managers hold a voluminous cache of place-based weed management experience and knowledge that has largely been untapped by the research community. We surveyed 260 California rangeland managers and restoration practitioners to investigate invasive and weedy species of concern, land management goals, perceived effectiveness of existing practices (i.e., prescribed fire, grazing, herbicide use, and seeding), and barriers to practice implementation. Respondents identified 196 problematic plants, with yellow starthistle (Centaurea solstitialis L.) and medusahead (Elymus caput-medusae L.) most commonly listed. Reported adoption and effectiveness of weed management practices varied regionally, but the most highly rated practice in general was herbicide use; however, respondents identified considerable challenges including nontarget effects, cost, and public perception. Livestock forage production was the most commonly reported management goals (64% of respondents), and 25% of respondents were interested in additional information on using grazing to manage invasive and weedy species; however, 19% of respondents who had used grazing for weed management did not perceive it to be an effective tool. Across management practices, we also found common barriers to implementation, including operational barriers (e.g., permitting, water availability), potential adverse impacts, actual effectiveness, and public perception. Land manager and practitioner identified commonalities of primary weeds, management goals, perceived practice effectiveness, and implementation barriers across diverse bioregions highlight major needs that could be immediately addressed through management-science partnerships across the state's expansive rangelands and natural areas.


Asunto(s)
Ecosistema , Herbicidas , Animales , California , Conservación de los Recursos Naturales , Ganado , Malezas , Control de Malezas
6.
Proc Natl Acad Sci U S A ; 116(48): 23887-23888, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31662473
7.
J Environ Manage ; 251: 109579, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31563601

RESUMEN

Ecosystem stability is one of the main factors maintaining ecosystem functioning and is closely related to temporal variability in productivity. Resistance and resilience reflect tolerance and recovering ability, respectively, of a plant community under perturbation, which are important for maintaining the stability of ecosystems. Generally, heavy grazing reduces the stability of grassland ecosystems, causing grassland degradation. However, how livestock grazing affects ecosystem stability is unclear in alpine steppe ecosystems. We conducted a five-year grazing experiment with Tibetan sheep in a semi-arid alpine steppe on the Qinghai-Tibetan Plateau, China. The experimental treatments included no grazing (NG), light grazing (LG, 2.4 sheep per ha), moderate grazing (MG, 3.6 sheep per ha) and heavy grazing (HG, 6.0 sheep ha). We calculated resistance and resilience of three plant functional groups and ecosystem stability under the three grazing intensities using aboveground primary productivity. The results showed that with increasing grazing intensity, aboveground biomass of each functional group significantly decreased. As grazing intensity increased, the resistance of forbs first increased then decreased. The resilience of graminoids in HG was significantly lower than in LG plots, but the resilience of legumes in HG was higher than in LG and MG plots. The resilience of graminoids was significantly higher than legume and forbs under LG and MG treatments. In HG treatments, resilience of legumes was higher than graminoids and forbs. Ecosystem stability did not change under different grazing intensities, because of dissimilar performance of the resilience and resistance of functional groups. Our results highlight how the differential resistance and resilience of different function groups facilitate the tolerance of alpine steppe to grazing under even a heavy intensity. However, the degradation risk of alpine steppe under heavy grazing still needs to be considered in grassland management due to sharp decreases of productivity.


Asunto(s)
Ecosistema , Ganado , Animales , China , Pradera , Ovinos , Tibet
8.
Heliyon ; 5(5): e01772, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31193533

RESUMEN

The spread and persistence of weedy plants in rangelands highlight the need for refinement of existing management techniques and development of novel strategies to address invasions. Strip-seeding - the strategic seeding of a portion of an invaded area to reduce costs and enhance success - is an underutilized management approach that holds promise for reducing weed dominance in grassland habitats. A strip-seeding experiment was established in 2011 in a California grassland where portions (between 0-100%) of invaded plots were seeded with native grasses. In 2016, we assessed the height, above-ground biomass and flower production of two late-season invasive plants: field bindweed and prickly lettuce. We found significant reductions in plant height and flower production (for both target invasives), and biomass (for field bindweed) in many of the seeded strips compared to the unseeded strips. Smaller seed applications demonstrated similar or better utility for weed control compared to greater seed applications, suggesting that this approach can be effective while reducing labor and materials cost of typical restoration management approaches. We did not find evidence that seeded strips provided invasion resistance to unseeded strips. This is possibly due to the lag in native species dispersal and establishment into contiguous unseeded strips, and suggests that strip-seeding might not provide invasion resistance to unseeded strips on timescales that are relevant to managers. However, this work does suggest that strip-seeding native species that overlap in phenology with target invasives can reduce late-season weed dominance on rangelands.

9.
Ecol Evol ; 8(16): 8187-8196, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30250694

RESUMEN

Grazing effects on arid and semi-arid grasslands can be constrained by aridity. Plant functional groups (PFGs) are the most basic component of community structure (CS) and biodiversity & ecosystem function (BEF). They have been suggested as identity-dependent in quantifying the response to grazing intensity and drought severity. Here, we examine how the relationships among PFGs, CS, BEF, and grazing intensity are driven by climatic drought. We conducted a manipulative experiment with three grazing intensities in 2012 (nondrought year) and 2013 (drought year). We classified 62 herbaceous plants into four functional groups based on their life forms. We used the relative species abundance of PFGs to quantify the effects of grazing and drought, and to explore the mechanisms for the pathway correlations using structural equation models (SEM) among PFGs, CS, and BEF directly or indirectly. Grazers consistently favored the perennial forbs (e.g., palatable or nutritious plants), decreasing the plants' relative abundance by 23%-38%. Drought decreased the relative abundance of ephemeral plants by 42 ± 13%; and increased perennial forbs by 20 ± 7% and graminoids by 80 ± 31%. SEM confirmed that annuals and biennials had negative correlations with the other three PFGs, with perennial bunchgrasses facilitated by perennial rhizome grass. Moreover, the contributions of grazing to community structure (i.e., canopy height) were 1.6-6.1 times those from drought, whereas drought effect on community species richness was 3.6 times of the grazing treatment. Lastly, the interactive effects of grazing and drought on BEF were greater than either alone; particularly, drought escalated grazing damage on primary production. Synthesis. The responses of PFGs, CS, and BEF to grazing and drought were identity-dependent, suggesting that grazing and drought regulation of plant functional groups might be a way to shape ecosystem structure and function in grasslands.

10.
Environ Monit Assess ; 190(10): 585, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209621

RESUMEN

In most grassland ecosystems, the effects of mean temperature increase on plant communities have been investigated; however, the effects of climate fluctuations on local plant community metrics are much less well understood. We conducted a nine-year survey in alpine meadow and alpine steppe to investigate the effects of inter-annual temperature and precipitation variation on plant community composition, species richness, and species diversity on the central Qinghai-Tibetan Plateau, China. We unexpectedly found that annual variability of growing season temperature, and not precipitation, is a driver of plant composition and species diversity in both habitats. Generally, increasing temperature had a negative effect on species diversity in meadow (r2 = 0.94) and steppe (r2 = 0.95). In the meadow habitat, the proportion of grass decreased with increasing temperature and ultimately had positive impacts on the proportion of sedges. In steppe habitat, legumes increased and forbs decreased with the increase of growing season temperature; both legumes and forbs negatively affected proportion of grass and resulted in grass remaining stable under temperature change. Our results provide evidence that responses of functional group composition and species richness to temporal change of temperature are very different from those responses to mean temperature increase on the central Qinghai-Tibetan Plateau. In our results, temperature is a main regulator for annual variation of functional group composition and species richness, while soil water content is a dominant regulator for community responses in other experimental warming studies.


Asunto(s)
Altitud , Clima , Procesos Climáticos , Pradera , Plantas , Poaceae/crecimiento & desarrollo , Temperatura , Biodiversidad , Biomasa , China , Cambio Climático , Ecosistema , Monitoreo del Ambiente , Fabaceae/crecimiento & desarrollo , Lluvia , Estaciones del Año , Suelo , Tibet , Agua
11.
J Environ Manage ; 211: 191-197, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29408066

RESUMEN

The historical management of agroecological systems, such as California's rangelands, have received criticism for a singular focus on agricultural production goals, while society has shifting expectations to the supply of multiple ecosystem services from these working landscapes. The sustainability and the multiple benefits derived from these complex social-ecological systems is increasingly threatened by weed invasion, extreme disturbance, urban development, and the impacts of a rapidly changing and increasingly variable climate. California's grasslands, oak savannas, and oak woodlands are among the most invaded ecosystems in the world. Weed eradication efforts are rarely combined with seeding on these landscapes despite support for the inclusion of the practice in a weed management program. Depending on seed mix choice, cost and long-term uncertainty, especially for native seed, is an impediment to adoption by land managers. We investigated four seeding mixes (forage annual, native perennial, exotic perennial, and exotic-native perennial) to evaluate how these treatments resist reinvasion and support the delivery of simultaneous multiple ecosystem services (invasion resistance, native richness, nitrogen fixing plants, pollinator food sources, plant community diversity, forage quality, and productivity). We found the increase of exotic and native perennial cover will drive resistance to an invading weedy summer flowering forb Centaurea solstitialis but provides a mixed response to resisting invasive annual grasses. The resistance to invasion is coupled with little tradeoff in forage productivity and quality and gains in plant diversity and native cover.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Poaceae , California , Objetivos , Plantas , Semillas
12.
PLoS One ; 12(4): e0176338, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28448544

RESUMEN

Understanding the efficacy of passive (reduction or cessation of environmental stress) and active (typically involving planting or seeding) restoration strategies is important for the design of successful revegetation of degraded riparian habitat, but studies explicitly comparing restoration outcomes are uncommon. We sampled the understory herbaceous plant community of 103 riparian sites varying in age since restoration (0 to 39 years) and revegetation technique (active, passive, or none) to compare the utility of different approaches on restoration success across sites. We found that landform type, percent shade, and summer flow helped explain differences in the understory functional community across all sites. In passively restored sites, grass and forb cover and richness were inversely related to site age, but in actively restored sites forb cover and richness were inversely related to site age. Native cover and richness were lower with passive restoration compared to active restoration. Invasive species cover and richness were not significantly different across sites. Although some of our results suggest that active restoration would best enhance native species in degraded riparian areas, this work also highlights some of the context-dependency that has been found to mediate restoration outcomes. For example, since the effects of passive restoration can be quite rapid, this approach might be more useful than active restoration in situations where rapid dominance of pioneer species is required to arrest major soil loss through erosion. As a result, we caution against labeling one restoration technique as better than another. Managers should identify ideal restoration outcomes in the context of historic and current site characteristics (as well as a range of acceptable alternative states) and choose restoration approaches that best facilitate the achievement of revegetation goals.


Asunto(s)
Ecosistema , Restauración y Remediación Ambiental/métodos , Plantas , Ríos , Desarrollo de la Planta
13.
PLoS One ; 11(9): e0163930, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27685330

RESUMEN

Understanding plant-microbe relationships can be important for developing management strategies for invasive plants, particularly when these relationships interact with underlying variables, such as habitat type and seedbank density, to mediate control efforts. In a field study located in California, USA, we investigated how soil microbial communities differ across the invasion front of Taeniatherum caput-medusae (medusahead), an annual grass that has rapidly invaded most of the western USA. Plots were installed in habitats where medusahead invasion is typically successful (open grassland) and typically not successful (oak woodland). Medusahead was seeded into plots at a range of densities (from 0-50,000 seeds/m2) to simulate different levels of invasion. We found that bacterial and fungal soil community composition were significantly different between oak woodland and open grassland habitats. Specifically, ectomycorrhizal fungi were more abundant in oak woodlands while arbuscular mycorrhizal fungi and plant pathogens were more abundant in open grasslands. We did not find a direct effect of medusahead density on soil microbial communities across the simulated invasion front two seasons after medusahead were seeded into plots. Our results suggest that future medusahead management initiatives might consider plant-microbe interactions.

14.
AoB Plants ; 72015.
Artículo en Inglés | MEDLINE | ID: mdl-26174145

RESUMEN

As a result of the increasing speed and magnitude in which habitats worldwide are experiencing environmental change, making accurate predictions of the effects of global change on ecosystems and the organisms that inhabit them have become an important goal for ecologists. Experimental and modelling approaches aimed at understanding the linkages between factors of global change and biotic responses have become numerous and increasingly complex in order to adequately capture the multifarious dynamics associated with these relationships. However, constrained by resources, experiments are often conducted at small spatiotemporal scales (e.g. looking at a plot of a few square metres over a few years) and at low organizational levels (looking at organisms rather than ecosystems) in spite of both theoretical and experimental work that suggests ecological dynamics across scales can be dissimilar. This phenomenon has been hypothesized to occur because the mechanisms that drive dynamics across scales differ. A good example is the effect of elevated CO2 on transpiration. While at the leaf level, transpiration can be reduced, at the stand level, transpiration can increase because leaf area per unit ground area increases. The reported net effect is then highly dependent on the spatiotemporal scale. This special issue considers the biological relevancy inherent in the patterns associated with the magnitude and type of response to changing environmental conditions, across scales. This collection of papers attempts to provide a comprehensive treatment of this phenomenon in order to help develop an understanding of the extent of, and mechanisms involved with, ecological response to global change.

15.
Proc Natl Acad Sci U S A ; 112(28): 8672-7, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26100891

RESUMEN

Local ecological communities represent the scale at which species coexist and share resources, and at which diversity has been experimentally shown to underlie stability, productivity, invasion resistance, and other desirable community properties. Globally, community diversity shows a mixture of increases and decreases over recent decades, and these changes have relatively seldom been linked to climatic trends. In a heterogeneous California grassland, we documented declining plant diversity from 2000 to 2014 at both the local community (5 m(2)) and landscape (27 km(2)) scales, across multiple functional groups and soil environments. Communities became particularly poorer in native annual forbs, which are present as small seedlings in midwinter; within native annual forbs, community composition changed toward lower representation of species with a trait indicating drought intolerance (high specific leaf area). Time series models linked diversity decline to the significant decrease in midwinter precipitation. Livestock grazing history, fire, succession, N deposition, and increases in exotic species could be ruled out as contributing causes. This finding is among the first demonstrations to our knowledge of climate-driven directional loss of species diversity in ecological communities in a natural (nonexperimental) setting. Such diversity losses, which may also foreshadow larger-scale extinctions, may be especially likely in semiarid regions that are undergoing climatic trends toward higher aridity and lower productivity.


Asunto(s)
Biodiversidad , Clima , Ecosistema , Poaceae
16.
PLoS One ; 10(4): e0123715, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25879440

RESUMEN

BACKGROUND: Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking. METHODS AND RESULTS: In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community. We quantified the resident community using ordination scores, then used structural equation modeling to examine hypotheses related to how plants respond to a network of experimental treatments and environmental variables. Variation in soil pH explained plant community response to nitrogen addition in the absence of invasion. However, in the presence of invasion, the direct effect of nitrogen on the community was negligible and soil moisture was important for explaining nitrogen effects. We did not find effects of warming on the native plant community in the absence of invasion. In the presence of invasion, however, warming had negative effects on functional richness directly and invasion and herbivory explained the overall positive effect of warming on the plant community. CONCLUSIONS AND SIGNIFICANCE: This work highlights the variation in the biotic and abiotic factors responsible for explaining independent and collective climate change effects over a short time scale. Future work should consider the complex and non-additive relationships among factors of climate change and invasion in order to capture more ecologically relevant features of our changing environment.


Asunto(s)
Nitrógeno/metabolismo , Plantas/metabolismo , Temperatura , Especificidad de la Especie
17.
Oecologia ; 177(2): 595-606, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25539620

RESUMEN

Climate change effects on plants are expected to be primarily mediated through early life stage transitions. Snowfall variability, in particular, may have profound impacts on seedling recruitment, structuring plant populations and communities, especially in mid-latitude systems. These water-limited and frequently invaded environments experience tremendous variation in snowfall, and species in these systems must contend with harsh winter conditions and frequent disturbance. In this study, we examined the mechanisms driving the effects of snowpack depth and soil disturbance on the germination, emergence, and establishment of the native Pseudoroegnaria spicata and the invasive Bromus tectorum, two grass species that are widely distributed across the cold deserts of North America. The absence of snow in winter exposed seeds to an increased frequency and intensity of freeze-thaw cycles and greater fungal pathogen infection. A shallower snowpack promoted the formation of a frozen surface crust, reducing the emergence of both species (more so for P. spicata). Conversely, a deeper snowpack recharged the soil and improved seedling establishment of both species by creating higher and more stable levels of soil moisture availability following spring thaw. Across several snow treatments, experimental disturbance served to decrease the cumulative survival of both species. Furthermore, we observed that, regardless of snowpack treatment, most seed mortality (70-80%) occurred between seed germination and seedling emergence (November-March), suggesting that other wintertime factors or just winter conditions in general limited survival. Our results suggest that snowpack variation and legacy effects of the snowpack influence emergence and establishment but might not facilitate invasion of cold deserts.


Asunto(s)
Bromus/crecimiento & desarrollo , Cambio Climático , Frío , Poaceae/crecimiento & desarrollo , Nieve , Bromus/microbiología , Germinación , Especies Introducidas , América del Norte , Plantas , Poaceae/microbiología , Estaciones del Año , Plantones/crecimiento & desarrollo , Plantones/microbiología , Semillas/crecimiento & desarrollo , Semillas/microbiología , Suelo
18.
AoB Plants ; 62014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25301820

RESUMEN

Response to global change is dependent on the level of biological organization (e.g. the ecologically relevant spatial scale) in which species are embedded. For example, individual responses can affect population-level responses, which, in turn, can affect community-level responses. Although relationships are known to exist among responses to global change across levels of biological organization, formal investigations of these relationships are still uncommon. I conducted an exploratory analysis to identify how nitrogen addition and warming by open top chambers might affect plants across spatial scales by estimating treatment effect size at the leaf level, the plant level and the community level. Moreover, I investigated if the presence of Pityopsis aspera, an experimentally introduced plant species, modified the relationship between spatial scale and effect size across treatments. I found that, overall, the spatial scale significantly contributes to differences in effect size, supporting previous work which suggests that mechanisms driving biotic response to global change are scale dependent. Interestingly, the relationship between spatial scale and effect size in both the absence and presence of experimental invasion is very similar for nitrogen addition and warming treatments. The presence of invasion, however, did not affect the relationship between spatial scale and effect size, suggesting that in this system, invasion may not exacerbate or attenuate climate change effects. This exercise highlights the value of moving beyond integration and scaling to the practice of directly testing for scale effects within single experiments.

19.
Am J Bot ; 100(7): 1422-34, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23825134

RESUMEN

PREMISE OF THE STUDY: Processes that drive ecological dynamics differ across spatial scales. Therefore, the pathways through which plant communities and plant-insect relationships respond to changing environmental conditions are also expected to be scale-dependent. Furthermore, the processes that affect individual species or interactions at single sites may differ from those affecting communities across multiple sites. METHODS: We reviewed and synthesized peer-reviewed literature to identify patterns in biotic or abiotic pathways underpinning changes in the composition and diversity of plant communities under three components of climate change (increasing temperature, CO2, and changes in precipitation) and how these differ across spatial scales. We also explored how these changes to plants affect plant-insect interactions. KEY RESULTS: The relative frequency of biotic vs. abiotic pathways of climate effects at larger spatial scales often differ from those at smaller scales. Local-scale studies show variable responses to climate drivers, often driven by biotic factors. However, larger scale studies identify changes to species composition and/or reduced diversity as a result of abiotic factors. Differing pathways of climate effects can result from different responses of multiple species, habitat effects, and differing effects of invasions at local vs. regional to global scales. Plant community changes can affect higher trophic levels as a result of spatial or phenological mismatch, foliar quality changes, and plant abundance changes, though studies on plant-insect interactions at larger scales are rare. CONCLUSIONS: Climate-induced changes to plant communities will have considerable effects on community-scale trophic exchanges, which may differ from the responses of individual species or pairwise interactions.


Asunto(s)
Cambio Climático , Ecosistema , Fenómenos Fisiológicos de las Plantas , Plantas/clasificación , Dióxido de Carbono , Demografía , Lluvia
20.
Ecol Evol ; 3(1): 170-81, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23404535

RESUMEN

Natural resources managers are being asked to follow practices that accommodate for the impact of climate change on the ecosystems they manage, while global-ecosystems modelers aim to forecast future responses under different climate scenarios. However, the lack of scientific knowledge about short-term ecosystem responses to climate change has made it difficult to define set conservation practices or to realistically inform ecosystem models. Until recently, the main goal for ecologists was to study the composition and structure of communities and their implications for ecosystem function, but due to the probable magnitude and irreversibility of climate-change effects (species extinctions and loss of ecosystem function), a shorter term focus on responses of ecosystems to climate change is needed. We highlight several underutilized approaches for studying the ecological consequences of climate change that capitalize on the natural variability of the climate system at different temporal and spatial scales. For example, studying organismal responses to extreme climatic events can inform about the resilience of populations to global warming and contribute to the assessment of local extinctions. Translocation experiments and gene expression are particular useful to quantitate a species' acclimation potential to global warming. And studies along environmental gradients can guide habitat restoration and protection programs by identifying vulnerable species and sites. These approaches identify the processes and mechanisms underlying species acclimation to changing conditions, combine different analytical approaches, and can be used to improve forecasts of the short-term impacts of climate change and thus inform conservation practices and ecosystem models in a meaningful way.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA