Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(3): e2307653, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38039956

RESUMEN

Advances in the development of new biorecognition elements, nanoparticle-based labels as well as instrumentation have inspired the design of new bioaffinity assays. This review critically discusses the potential of nanoparticles to replace current enzymatic or molecular labels in immunoassays and other bioaffinity assays. Successful implementations of nanoparticles in commercial assays and the need for rapid tests incorporating nanoparticles in different roles such as capture support, signal generation elements, and signal amplification systems are highlighted. The limited number of nanoparticles applied in current commercial assays can be explained by challenges associated with the analysis of real samples (e.g., blood, urine, or nasal swabs) that are difficult to resolve, particularly if the same performance can be achieved more easily by conventional labels. Lateral flow assays that are based on the visual detection of the red-colored line formed by colloidal gold are a notable exception, exemplified by SARS-CoV-2 rapid antigen tests that have moved from initial laboratory testing to widespread market adaption in less than two years.


Asunto(s)
Nanopartículas , Inmunoensayo , Sensibilidad y Especificidad
2.
Angew Chem Int Ed Engl ; 62(40): e202311828, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37695091

RESUMEN

Otto Wolfbeis, Professor emeritus of Analytical Chemistry at the University of Regensburg, passed away on June 1, 2023. Along with his seminal work on optical sensors and fluorescent (nano)materials, he will be remembered as an outstanding researcher who inspired many talents around the world.

3.
J Colloid Interface Sci ; 649: 49-57, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37336153

RESUMEN

Photon upconversion is an intensively investigated phenomenon in the materials sciences due to its unique applications, mainly in biomedicine for disease prevention and treatment. This study reports the synthesis and properties of tetragonal LiYbF4:Tm3+@LiYF4 core@shell nanoparticles (NPs) and their applications. The NPs had sizes ranging from 18.5 to 23.7 nm. As a result of the energy transfer between Yb3+ and Tm3+ ions, the synthesized NPs show intense emission in the ultraviolet (UV) range up to 347 nm under 975 nm excitation. The bright emission in the UV range allows for singlet oxygen generation in the presence of hematoporphyrin on the surface of NPs. Our studies show that irradiation with a 975 nm laser of the functionalized NPs allows for the production of amounts of singlet oxygen easily detectable by Singlet Oxygen Sensor Green. The high emission intensity of NPs at 800 nm allowed the application of the synthesized NPs in an upconversion-linked immunosorbent assay (ULISA) for highly sensitive detection of the nucleoprotein from SARS-CoV-2, the causative agent of Covid-19. This article proves that LiYbF4:Tm3+@LiYF4 core@shell nanoparticles can be perfect alternatives for the most commonly studied upconverting NPs based on the NaYF4 host compound and are good candidates for biomedical applications.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , Oxígeno Singlete , SARS-CoV-2 , COVID-19/diagnóstico , Inmunoensayo
4.
Anal Chem ; 95(10): 4753-4759, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916131

RESUMEN

The COVID-19 crisis requires fast and highly sensitive tests for the early stage detection of the SARS-CoV-2 virus. For detecting the nucleocapsid protein (N protein), the most abundant viral antigen, we have employed upconversion nanoparticles that emit short-wavelength light under near-infrared excitation (976 nm). The anti-Stokes emission avoids autofluorescence and light scattering and thus enables measurements without optical background interference. The sandwich upconversion-linked immunosorbent assay (ULISA) can be operated both in a conventional analog mode and in a digital mode based on counting individual immune complexes. We have investigated how different antibody combinations affect the detection of the wildtype N protein and the detection of SARS-CoV-2 (alpha variant) in lysed culture fluid via the N protein. The ULISA yielded a limit of detection (LOD) of 1.3 pg/mL (27 fM) for N protein detection independent of the analog or digital readout, which is approximately 3 orders of magnitude more sensitive than conventional enzyme-linked immunosorbent assays or commercial lateral flow assays for home testing. In the case of SARS-CoV-2, the digital ULISA additionally improved the LOD by a factor of 10 compared to the analog readout.


Asunto(s)
COVID-19 , Inmunoadsorbentes , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Ensayo de Inmunoadsorción Enzimática , Proteínas de la Nucleocápside , Anticuerpos Antivirales , Sensibilidad y Especificidad
5.
Anal Chem ; 94(47): 16376-16383, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36383476

RESUMEN

Conventional immunochemical methods used in clinical analysis are often not sensitive enough for early-stage diagnosis, resulting in the need for novel assay formats. Here, we provide a detailed comparison of the effect of different labels and solid supports on the performance of heterogeneous immunoassays. When comparing three types of streptavidin-modified labels─horseradish peroxidase, carboxyfluorescein, and photon-upconversion nanoparticles (UCNPs)─UCNPs led to the most sensitive and robust detection of the cancer biomarker prostate-specific antigen. Additionally, we compared the immunoassay formats based on conventional microtiter plates and magnetic microbeads (MBs). In both cases, the highest signal-to-background ratios and the lowest limits of detection (LODs) were obtained by using the UCNP labels. The MB-based upconversion-linked immunosorbent assay carried out with a preconcentration step provided the lowest LOD of 0.46 pg/mL in serum. The results demonstrate that the use of UCNPs and MBs can significantly improve the sensitivity and working range of heterogeneous immunoassays for biomarker detection.


Asunto(s)
Inmunoadsorbentes , Nanopartículas , Masculino , Humanos , Inmunoensayo/métodos , Límite de Detección , Estreptavidina , Magnetismo
6.
Light Sci Appl ; 11(1): 179, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701392

RESUMEN

A nanocomposite consisting of a cubic EuSe semiconductor material grown on a hexagonal upconversion nanoparticle has overcome the crystal lattice mismatch that typically prevents the epitaxial growth of such heterogeneous nanocrystals. Eu3+ at the interface layer shows its characteristic red emission band both under UV excitation light due to energy transfer from the semiconductor and under NIR excitation light due to energy transfer after photon-upconversion. Data storage and security applications are suggested for this new nanocomposite.

7.
Talanta ; 244: 123400, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35395457

RESUMEN

Surface engineering of upconverting nanoparticles (UCNPs) is crucial for their bioanalytical applications. Here, an antibody specific to cardiac troponin I (cTnI), an important biomarker for acute myocardial infection, was covalently immobilized on the surface of UCNPs to prepare a label for the detection of cTnI biomarker in an upconversion-linked immunoassay (ULISA). Core-shell UCNPs (NaYF4:Yb,Tm@NaYF4) were first coated with poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and then conjugated to antibodies. The morphology (size and uniformity), hydrodynamic diameter, chemical composition, and amount of coating on the of UCNPs, as well as their upconversion luminescence, colloidal stability, and leaching of Y3+ ions into the surrounding media, were determined. The developed ULISA allowed reaching a limit of detection (LOD) of 0.13 ng/ml and 0.25 ng/ml of cTnI in plasma and serum, respectively, which represents 12- and 2-fold improvement to conventional enzyme-linked immunosorbent based on the same immunoreagents.


Asunto(s)
Nanopartículas , Troponina I/análisis , Inmunoensayo/métodos , Límite de Detección , Luminiscencia , Nanopartículas/química
8.
Anal Chem ; 94(16): 6073-6083, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35404586

RESUMEN

Immunoassays are important tools for clinical diagnosis as well as environmental and food analysis because they enable highly sensitive and quantitative measurements of analyte concentrations. In the 1980s, Roger Ekins suggested to improve the sensitivity of immunoassays by employing microspot assays, which are carried out under ambient analyte conditions and do not change the bulk analyte concentration of a sample during a measurement. More recently, the measurement of single analyte molecules has additionally attracted wide research interest. Although the ability to detect a single analyte molecule is not synonymous with the highest analytical sensitivity, single-molecule detection makes new routes accessible to avoiding background noise. This perspective follows the development of solid-phase immunoassays from the design of label techniques to single-molecule (digital) assays against the backdrop of Ekins's fundamental work on immunoassay theory. The essential aspects of both ambient analyte and digital assay approaches are presented as a guideline to finding a balance between the speed, sensitivity, and precision of immunoassays.


Asunto(s)
Inmunoensayo , Inmunoensayo/métodos
9.
Nat Protoc ; 17(4): 1028-1072, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35181766

RESUMEN

The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody-silica-UCNP conjugate takes 3 d, the streptavidin-poly(ethylene glycol)-UCNP conjugate takes 2-3 weeks, upconversion-linked immunosorbent assay takes 2-4 d and immunocytochemistry takes 8-10 h. The procedures can be performed after standard laboratory training in nanomaterials research.


Asunto(s)
Nanopartículas , Neoplasias , Biomarcadores de Tumor , Humanos , Inmunoadsorbentes , Masculino , Nanopartículas/química , Neoplasias/diagnóstico , Polietilenglicoles/química , Dióxido de Silicio/química , Estreptavidina
10.
Adv Healthc Mater ; 10(18): e2100506, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34263562

RESUMEN

Sensitive immunoassays are required for troponin, a low-abundance cardiac biomarker in blood. In contrast to conventional (analog) assays that measure the integrated signal of thousands of molecules, digital assays are based on counting individual biomarker molecules. Photon-upconversion nanoparticles (UCNP) are an excellent nanomaterial for labeling and detecting single biomarker molecules because their unique anti-Stokes emission avoids optical interference, and single nanoparticles can be reliably distinguished from the background signal. Here, the effect of the surface architecture and size of UCNP labels on the performance of upconversion-linked immunosorbent assays (ULISA) is critically assessed. The size, brightness, and surface architecture of UCNP labels are more important for measuring low troponin concentrations in human plasma than changing from an analog to a digital detection mode. Both detection modes result approximately in the same assay sensitivity, reaching a limit of detection (LOD) of 10 pg mL-1 in plasma, which is in the range of troponin concentrations found in the blood of healthy individuals.


Asunto(s)
Nanopartículas , Humanos , Inmunoensayo , Tamaño de la Partícula , Fotones , Troponina
11.
Mikrochim Acta ; 188(5): 147, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33797618

RESUMEN

Immunohistochemistry (IHC) and immunocytochemistry (ICC) are widely used to identify cancerous cells within tissues and cell cultures. Even though the optical microscopy evaluation is considered the gold standard, the limited range of useful labels and narrow multiplexing capabilities create an imminent need for alternative readout techniques. Laser-induced breakdown spectroscopy (LIBS) enables large-scale multi-elemental analysis of the surface of biological samples, e.g., thin section or cell pellet. It is, therefore, a potential alternative for IHC and ICC readout of various labels or tags (Tag-LIBS approach). Here, we introduce Tag-LIBS as a method for the specific determination of HER2 biomarker. The cell pellets were labeled with streptavidin-conjugated upconversion nanoparticles (UCNP) through a primary anti-HER2 antibody and a biotinylated secondary antibody. The LIBS scanning enabled detecting the characteristic elemental signature of yttrium as a principal constituent of UCNP, thus indirectly providing a reliable way to differentiate between HER2-positive BT-474 cells and HER2-negative MDA-MB-231 cells. The comparison of results with upconversion optical microscopy and luminescence intensity scanning confirmed that LIBS is a promising alternative for the IHC and ICC readout.


Asunto(s)
Biomarcadores de Tumor/análisis , Nanopartículas/química , Receptor ErbB-2/análisis , Anticuerpos Inmovilizados/inmunología , Biomarcadores de Tumor/inmunología , Línea Celular Tumoral , Estudios de Factibilidad , Fluoruros/química , Fluoruros/efectos de la radiación , Humanos , Inmunohistoquímica/métodos , Luz , Nanopartículas/efectos de la radiación , Receptor ErbB-2/inmunología , Análisis Espectral/métodos , Tulio/química , Tulio/efectos de la radiación , Itrio/química , Itrio/efectos de la radiación
12.
Analyst ; 146(1): 13-32, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33205784

RESUMEN

Food safety and quality regulations inevitably call for sensitive and accurate analytical methods to detect harmful contaminants in food and to ensure safe food for the consumer. Both novel and well-established biorecognition elements, together with different transduction schemes, enable the simple and rapid analysis of various food contaminants. Upconversion nanoparticles (UCNPs) are inorganic nanocrystals that convert near-infrared light into shorter wavelength emission. This unique photophysical feature, along with narrow emission bandwidths and large anti-Stokes shift, render UCNPs excellent optical labels for biosensing because they can be detected without optical background interferences from the sample matrix. In this review, we show how this exciting technique has evolved into biosensing platforms for food quality and safety monitoring and highlight recent applications in the field.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Calidad de los Alimentos , Rayos Infrarrojos , Nanopartículas/toxicidad
13.
Biosens Bioelectron ; 170: 112683, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069054

RESUMEN

Due to increasing food safety standards, the analysis of mycotoxins has become essential in the food industry. In this work, we have developed a competitive upconversion-linked immunosorbent assay (ULISA) for the analysis of zearalenone (ZEA), one of the most frequently encountered mycotoxins in food worldwide. Instead of a toxin-conjugate conventionally used in competitive immunoassays, we designed a ZEA mimicking peptide extended by a biotin-linker and confirmed its excellent suitability to mimic ZEA by nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR) analysis. Upconversion nanoparticles (UCNP, type NaYF4:Yb,Tm) served as background-free optical label for the detection of the peptide mimetic in the competitive ULISA. Streptavidin-conjugated UCNPs were prepared by click reaction using an alkyne-PEG-neridronate linker. The UCNP conjugate clearly outperformed conventional labels such as enzymes or fluorescent dyes. With a limit of detection of 20 pg mL-1 (63 pM), the competitive ULISA is well applicable to the detection of ZEA at the levels set by the European legislation. Moreover, the ULISA is specific for ZEA and its metabolites (α- and ß-zearalenol) without significant cross-reactivity with other related mycotoxins. We detected ZEA in spiked and naturally contaminated maize samples using liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) as a reference method to demonstrate food analysis in real samples.


Asunto(s)
Técnicas Biosensibles , Micotoxinas , Zearalenona , Cromatografía Liquida , Contaminación de Alimentos/análisis , Inmunoensayo , Micotoxinas/análisis , Péptidos , Espectrometría de Masas en Tándem , Zea mays , Zearalenona/análisis
14.
Biomacromolecules ; 21(11): 4502-4513, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32392042

RESUMEN

Lanthanide-doped upconversion nanoparticles (UCNPs) display highly beneficial photophysical features for background-free bioimaging and bioanalysis; however, they are instable in high ionic strength buffers, have no functional groups, and are nonspecifically interacting. Here, we have prepared NIR-excitable UCNPs that are long-term colloidally stable in buffered media and possess functional groups. Heterobifunctional poly(ethylene glycol) (PEG) linkers bearing neridronate and alkyne or maleimide were attached to UCNPs via a ligand exchange. Streptavidin (SA)-conjugates were prepared by click reaction of UCNP@PEG-alkyne and SA-azide. Antihuman serum albumin pAbF antibody was modified with azide groups and conjugated to UCNP@PEG-alkyne via click reaction; alternatively, the antibody, after mild reduction of its disulfide bonds, was conjugated to UCNP@PEG-maleimide. We employed these nanoconjugates as labels for an upconversion-linked immunosorbent assay. SA-based labels achieved the lowest LOD of 0.17 ng/mL for the target albumin, which was superior compared to a fluorescence immunoassay (LOD 0.59 ng/mL) or an enzyme-linked immunoassay (LOD 0.56 ng/mL).


Asunto(s)
Nanopartículas , Polietilenglicoles
15.
Talanta ; 214: 120844, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32278425

RESUMEN

In this report, the effects of forced convection on scanning electrochemical microscopy (SECM) studies of enzymes in the context of the generator-collector mode (G/C mode) were investigated. Forced convection was generated via an electrical high precision stirrer integrated into the electrochemical cell. Circular spots of glucose oxidase were immobilized on a gold support serving as model substrate. The diffusion layer of enzymatically generated H2O2 was characterized recording probe scan curves (PSCs) in z-direction. Furthermore, the enzyme-modified surfaces were investigated via constant-height SECM imaging in feedback mode and in G/C mode. For methodical comparison all sets of experiments were performed in quiescent solution (conventional approach) and with forced convection, respectively. In contrast to a growing diffusion layer without forced convection by applying forced convection, a constant diffusion layer of produced H2O2 was observed. Hence, via hydrodynamic SECM time-independent images within a reasonable time scale of SECM measurements in G/C mode were enabled and their resolution was enhanced.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Glucosa Oxidasa/química , Hidrodinámica , Aspergillus niger/enzimología , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glucosa Oxidasa/metabolismo , Oro/química , Oro/metabolismo , Tamaño de la Partícula , Propiedades de Superficie
16.
Nanoscale ; 12(15): 8303-8313, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32236194

RESUMEN

Immunohistochemistry (IHC) and immunocytochemistry (ICC) are routinely employed for the microscopic identification and diagnosis of cancerous cells in histological tissues and cell cultures. The maximally attainable contrast of conventional histological staining techniques, however, is low. While the anti-Stokes emission of photon-upconversion nanoparticles (UCNP) can efficiently eliminate optical background interference, excluding non-specific interactions of the label with the histological sample is equally important for specific immunolabeling. To address both requirements, we have designed and characterized several UCNP-based nanoconjugates as labels for the highly specific detection of the cancer biomarker HER2 on various breast cancer cell lines. An optimized streptavidin-PEG-neridronate-UCNP conjugate provided an unsurpassed signal-to-background ratio of 319, which was 50-fold better than conventional fluorescent labeling under the same experimental conditions. In combination, the absence of optical interference and non-specific binding lays the foundation for computer-based data evaluation in digital pathology.


Asunto(s)
Inmunohistoquímica/métodos , Nanopartículas/química , Fotones , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Difosfonatos/química , Humanos , Luminiscencia , Nanoconjugados/química , Polietilenglicoles/química , Relación Señal-Ruido , Estreptavidina/química
17.
Angew Chem Int Ed Engl ; 59(27): 10746-10773, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31869502

RESUMEN

The ability to detect low concentrations of analytes and in particular low-abundance biomarkers is of fundamental importance, e.g., for early-stage disease diagnosis. The prospect of reaching the ultimate limit of detection has driven the development of single-molecule bioaffinity assays. While many review articles have highlighted the potentials of single-molecule technologies for analytical and diagnostic applications, these technologies are not as widespread in real-world applications as one should expect. This Review provides a theoretical background on single-molecule-or better digital-assays to critically assess their potential compared to traditional analog assays. Selected examples from the literature include bioaffinity assays for the detection of biomolecules such as proteins, nucleic acids, and viruses. The structure of the Review highlights the versatility of optical single-molecule labeling techniques, including enzymatic amplification, molecular labels, and innovative nanomaterials.


Asunto(s)
Imagen Individual de Molécula/métodos , Sitios de Unión , Biomarcadores/análisis , Ensayo de Inmunoadsorción Enzimática , Colorantes Fluorescentes/química , Límite de Detección , Nanoestructuras/química , Ácidos Nucleicos/análisis , Reacción en Cadena de la Polimerasa/métodos , Proteínas/análisis , Relación Señal-Ruido , Virus/aislamiento & purificación
18.
Anal Chem ; 91(15): 9435-9441, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31246416

RESUMEN

Single-molecule (digital) immunoassays provide the ability to detect much lower protein concentrations than conventional immunoassays. As photon-upconversion nanoparticles (UCNPs) can be detected without optical background interference, they are excellent labels for so-called single-molecule upconversion-linked immunosorbent assays (ULISAs). We have introduced a UCNP label design based on streptavidin-PEG-neridronate and a two-step detection scheme involving a biotinylated antibody that efficiently reduces nonspecific binding on microtiter plates. In a microtiter plate immunoassay, individual sandwich immune complexes of the cancer marker prostate-specific antigen (PSA) are detected and counted by wide-field epiluminescence microscopy (digital readout). The digital detection is 16× more sensitive than the respective analogue readout and thus expands the limit of detection to the sub-femtomolar concentration range (LOD: 23 fg mL-1, 800 aM). The single molecule ULISA shows excellent correlation with an electrochemiluminescence reference method. Although the analogue readout can routinely measure PSA concentrations in human serum samples, very low concentrations have to be monitored after radical prostatectomy. Combining the digital and analogue readout covers a dynamic range of more than 3 orders of magnitude in a single experiment.


Asunto(s)
Inmunoensayo/métodos , Técnicas de Inmunoadsorción , Antígeno Prostático Específico/sangre , Imagen Individual de Molécula/métodos , Dermoscopía/métodos , Difosfonatos , Humanos , Masculino , Nanopartículas/química , Fotones , Polietilenglicoles , Estreptavidina
19.
Methods Appl Fluoresc ; 7(3): 030201, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31181562

RESUMEN

The Conference and Spring School on Properties, Design and Applications of Upconversion Nanomaterials (UPCON) provides a new forum for all experts and newcomers in the field of upconversion research. On the occasion of the second UPCON 2018 in Valencia (Spain), we are pleased to present a collection of 12 reviews and research articles that reflect recent advances in upconversion materials, their unique luminescent properties and many applications spanning from nanoscale thermometry to biomedicine.

20.
Nanoscale ; 11(17): 8343-8351, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-30984949

RESUMEN

European foulbrood (EFB) is an infectious disease affecting honeybee larvae caused by the bacterium Melissococcus plutonius. The enzyme-linked immunosorbent assay (ELISA) is the gold standard for antibody-based bacteria detection, however, its sensitivity is not high enough to reveal early-stage EFB infection. Photon-upconversion nanoparticles (UCNPs) are lanthanide-doped nanomaterials that emit light of shorter wavelength under near-infrared (NIR) excitation and thus avoid optical background interference. After conjugation with specific biorecognition molecules, UCNPs can be used as ultrasensitive labels in immunoassays. Here, we introduce a method for conjugation of UCNPs with streptavidin based on copper-free click chemistry, which involves surface modification of UCNPs with alkyne-modified bovine serum albumin (BSA) that prevents the non-specific binding and provides reactive groups for conjugation with streptavidin-azide. To develop a sandwich upconversion-linked immunosorbent assay (ULISA) for M. plutonius detection, we have prepared a rabbit polyclonal anti-Melissococcus antibody. The specific capture of the bacteria was followed by binding of biotinylated antibody and UCNP-BSA-streptavidin conjugate for a highly sensitive upconversion readout. The assay yielded an LOD of 340 CFU mL-1 with a wide working range up to 109 CFU mL-1, which is 400 times better than the LOD of the conventional ELISA. The practical applicability of the ULISA was successfully demonstrated by detecting M. plutonius in spiked real samples of bees, larvae and bottom hive debris. These results show a great potential of the assay for early diagnosis of EFB, which can prevent uncontrolled spreading of the infection and losses of honeybee colonies.


Asunto(s)
Abejas/microbiología , Enterococcaceae/aislamiento & purificación , Inmunoensayo/métodos , Nanopartículas/química , Animales , Anticuerpos Antibacterianos/inmunología , Abejas/crecimiento & desarrollo , Enterococcaceae/inmunología , Larva/inmunología , Larva/metabolismo , Límite de Detección , Fotones , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA