Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Biochim Biophys Acta Gen Subj ; 1868(10): 130671, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39032853

RESUMEN

The skin is a complex organ, and the intricate network between keratinocytes and immune cells is critical for ensuring skin function. Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) is a ribonuclease that functions as a key negative modulator of inflammation. We previously reported that conditional deletion of MCPIP1 in keratinocytes (Mcpip1EKO) impairs skin integrity in adult mice. A similar phenotype was observed following the depletion of MCPIP1 in the myeloid compartment (Mcpip1MKO). The aim of this study was to develop a keratinocyte and myeloid double-MCPIP1 knockout mouse model to clarify the specific roles of myeloid and epidermal MCPIP1 in skin biology. Histological analyses indicated that the skin morphology changed after depletion of MCPIP1 in cells of myeloid origin as well as in keratinocytes. The thicknesses of the epidermal and subcutaneous fat layers increased in the mice with a loss of epidermal MCPIP1, whereas the loss of myeloid MCPIP1 had the opposite effect. In addition, both types of mice showed opposite responses to stimulation with 12-O-tetradecanoylphorbol-13-acetate. Transcriptomic profiling of whole-skin lysates revealed some common target transcripts in all the knockout mice. Further analyses revealed that distinct pathways are modulated following the loss of epidermal or myeloid MCPIP1. The skin morphology and inflammatory phenotype of keratinocyte and myeloid double-MCPIP1 knockout mice resembled those of mice with only keratinocyte-specific knockout of MCPIP1. Overall, myeloid and epidermal MCPIP1 play important but distinct roles in the modulation of skin-related processes.


Asunto(s)
Homeostasis , Queratinocitos , Ratones Noqueados , Células Mieloides , Ribonucleasas , Piel , Animales , Queratinocitos/metabolismo , Ribonucleasas/metabolismo , Ribonucleasas/genética , Ratones , Piel/metabolismo , Piel/patología , Células Mieloides/metabolismo , Epidermis/metabolismo , Epidermis/patología , Ratones Endogámicos C57BL
2.
Microbiol Spectr ; 12(8): e0087724, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39012117

RESUMEN

Comprehensive whole-genome sequencing was performed on two multi-drug-resistant Escherichia coli strains isolated from cattle manure from a typical dairy farm in Poland in 2020. The identified strains are resistant to beta-lactams, aminoglycosides, tetracyclines, trimethoprim/sulfamethoxazole, and fluoroquinolones. The complete sequences of the harbored plasmids revealed antibiotic-resistance genes located within many mobile genetic elements (e.g., insertional sequences or transposons) and genes facilitating conjugal transfer or promoting horizontal gene transfer. These plasmids are hitherto undescribed. Similar plasmids have been identified, but not in Poland. The identified plasmids carried resistance genes, including the tetracycline resistance gene tet(A), aph family aminoglycoside resistance genes aph(3″)-lb and aph (6)-ld, beta-lactam resistance genes blaTEM-1 and blaCTX-M-15, sulfonamide resistance gene sul2, fluoroquinolone resistance gene qnrS1, and the trimethoprim resistance gene dfrA14. The characterized resistance plasmids were categorized into the IncY incompatibility group, indicating a high possibility for dissemination among the Enterobacteriaceae. While similar plasmids (99% identity) have been found in environmental and clinical samples, none have been identified in farm animals. These findings are significant within the One Health framework, as they underline the potential for antimicrobial-resistant E. coli from livestock and food sources to be transmitted to humans and vice versa. It highlights the need for careful monitoring and strategies to limit the spread of antibiotic resistance in the One Health approach. IMPORTANCE: This study reveals the identification of new strains of antibiotic-resistant Escherichia coli in cattle manure from a dairy farm in Poland, offering critical insights into the spread of drug resistance. Through whole-genome sequencing, researchers discovered novel plasmids within these bacteria, which carry genes resistant to multiple antibiotics. These findings are particularly alarming, as these plasmids can transfer between different bacterial species, potentially escalating the spread of antibiotic resistance. This research underscores the vital connection between the health of humans, animals, and the environment, emphasizing the concept of One Health. It points to the critical need for global vigilance and strategies to curb the proliferation of antibiotic resistance. By showcasing the presence of these strains and their advanced resistance mechanisms, the study calls for enhanced surveillance and preventive actions in both agricultural practices and healthcare settings to address the imminent challenge of antibiotic-resistant bacteria.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Escherichia coli , Heces , Transferencia de Gen Horizontal , Plásmidos , Animales , Bovinos , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Farmacorresistencia Bacteriana Múltiple/genética , Polonia , Antibacterianos/farmacología , Heces/microbiología , Secuenciación Completa del Genoma , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Pruebas de Sensibilidad Microbiana
3.
Environ Sci Pollut Res Int ; 31(35): 47727-47741, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007976

RESUMEN

The study describes the whole-genome sequencing of two antibiotic-resistant representative Escherichia coli strains, isolated from poultry manure in 2020. The samples were obtained from a commercial chicken meat production facility in Poland. The antibiotic resistance profile was characterized by co-resistance to ß-lactam antibiotics, aminoglycosides, and fluoroquinolones. The three identified resistance plasmids (R-plasmids), pECmdr13.2, pECmdr13.3, and pECmdr14.1, harbored various genes conferring resistance to tetracyclines (tetR[A]) for, aminoglycoside (aph, aac, and aad families), ß-lactam (blaCMY-2, blaTEM-176), sulfonamide (sul1, sul2), fluoroquinolone (qnrS1), and phenicol (floR). These plasmids, which have not been previously reported in Poland, were found to carry IS26 insertion elements, the intI1-integrase gene, and conjugal transfer genes, facilitating horizontal gene transfer. Plasmids pECmdr13.2 and pECmdr14.1 also possessed a mercury resistance gene operon related to transposon Tn6196; this promotes plasmid persistence even without antibiotic selection pressure due to co-selection mechanisms such as co-resistance. The chicken manure-derived plasmids belonged to the IncX1 (narrow host range) and IncC (broad host range) incompatibility groups. Similar plasmids have been identified in various environments, clinical isolates, and farm animals, including cattle, swine, and poultry. This study holds significant importance for the One Health approach, as it highlights the potential for antibiotic-resistant bacteria from livestock and food sources, particularly E. coli, to transfer through the food chain to humans and vice versa.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Escherichia coli , Estiércol , Plásmidos , Animales , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Polonia , Farmacorresistencia Bacteriana Múltiple/genética , Estiércol/microbiología , Antibacterianos/farmacología , Aves de Corral , Pollos
4.
Nutrients ; 16(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612951

RESUMEN

BACKGROUND: The study investigated the impact of starch degradation products (SDexF) as prebiotics on obesity management in mice and overweight/obese children. METHODS: A total of 48 mice on a normal diet (ND) and 48 on a Western diet (WD) were divided into subgroups with or without 5% SDexF supplementation for 28 weeks. In a human study, 100 overweight/obese children were randomly assigned to prebiotic and control groups, consuming fruit and vegetable mousse with or without 10 g of SDexF for 24 weeks. Stool samples were analyzed for microbiota using 16S rRNA gene sequencing, and short-chain fatty acids (SCFA) and amino acids (AA) were assessed. RESULTS: Results showed SDexF slowed weight gain in female mice on both diets but only temporarily in males. It altered bacterial diversity and specific taxa abundances in mouse feces. In humans, SDexF did not influence weight loss or gut microbiota composition, showing minimal changes in individual taxa. The anti-obesity effect observed in mice with WD-induced obesity was not replicated in children undergoing a weight-loss program. CONCLUSIONS: SDexF exhibited sex-specific effects in mice but did not impact weight loss or microbiota composition in overweight/obese children.


Asunto(s)
Obesidad Infantil , Solanum tuberosum , Niño , Humanos , Masculino , Femenino , Animales , Ratones , Dextrinas , Dieta Occidental , Disbiosis , Sobrepeso , ARN Ribosómico 16S/genética , Peso Corporal , Almidón/farmacología , Frutas
6.
J Transl Med ; 21(1): 285, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37118737

RESUMEN

BACKGROUND: A causal link between microbiota composition (dysbiosis) and oncogenesis has been demonstrated for several types of cancer. Neutrophils play a role in both immune protection against bacterial threats and carcinogenesis. This study aimed to characterise intratumoral bacteria in vulvar squamous cell carcinoma (VSCC) and their putative effect on neutrophil recruitment and cancer progression. METHODS: Clinical material was obtained from 89 patients with VSCC. Next-generation sequencing (NGS) of 16S rRNA and quantitative polymerase chain reaction (qPCR) were used to detect bacterial species in VSCC. To verify neutrophil activation, CD66b expression in tumour specimens was analysed by immunohistochemistry (IHC). Subsequently, IHC was applied to detect the main neutrophil serine proteases (NSPs), cathepsin G (CTSG), neutrophil elastase (ELANE), and proteinase 3 (PRTN3) in VSCC. RESULTS: Fusobacterium nucleatum and Pseudomonas aeruginosa were identified as tumour-promoting bacteria, and their presence was found to be associated with a shorter time to progression in VSCC patients. Furthermore, high abundance of CD66b, the neutrophil activation marker, in VSCC samples, was found to relate to poor survival of patients with VSCC. The selected NSPs were shown to be expressed in vulvar tumours, also within microabscess. The increased numbers of microabscesess were correlated with poor survival in VSCC patients. CONCLUSIONS: Our results show that neutrophilic inflammation seem to be permissive for tumour-promoting bacteria growth in VSCC. The findings provide new therapeutic opportunities, such as based on shifting the balance of neutrophil populations to those with antitumorigenic activity and on targeting NSPs produced by activated neutrophils at the inflammation sites.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Vulva , Femenino , Humanos , Neoplasias de la Vulva/metabolismo , Neoplasias de la Vulva/patología , Neoplasias de la Vulva/terapia , ARN Ribosómico 16S , Carcinoma de Células Escamosas/patología , Inflamación/complicaciones , Células Epiteliales/patología , Microambiente Tumoral
7.
Cells ; 11(19)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36230905

RESUMEN

HAX1 is a human protein with no known homologues or structural domains. Mutations in the HAX1 gene cause severe congenital neutropenia through mechanisms that are poorly understood. Previous studies reported the RNA-binding capacity of HAX1, but the role of this binding in physiology and pathology remains unexplained. Here, we report the transcriptome-wide characterization of HAX1 RNA targets using RIP-seq and CRAC, indicating that HAX1 binds transcripts involved in translation, ribosome biogenesis, and rRNA processing. Using CRISPR knockouts, we find that HAX1 RNA targets partially overlap with transcripts downregulated in HAX1 KO, implying a role in mRNA stabilization. Gene ontology analysis demonstrated that genes differentially expressed in HAX1 KO (including genes involved in ribosome biogenesis and translation) are also enriched in a subset of genes whose expression correlates with HAX1 expression in four analyzed neoplasms. The functional connection to ribosome biogenesis was also demonstrated by gradient sedimentation ribosome profiles, which revealed differences in the small subunit:monosome ratio in HAX1 WT/KO. We speculate that changes in HAX1 expression may be important for the etiology of HAX1-linked diseases through dysregulation of translation.


Asunto(s)
Proteínas , Ribosomas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Humanos , Mutación , Proteínas/metabolismo , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
8.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36012391

RESUMEN

BACKGROUND: Elevated concentrations of airborne pollutants are correlated with an enlarged rate of obstructive lung disease morbidity as well as acute disease exacerbations. This study aimed to analyze the epithelium mRNA profile in response to airborne particulate matter in the control, asthma, and COPD groups. RESULTS: A triple co-culture of nasal epithelium, monocyte-derived macrophages, and monocyte-derived dendritic cells obtained from the controls, asthma, and COPD were exposed to urban particulate matter (UPM) for 24 h. RNA-Seq analysis found differences in seven (CYP1B1, CYP1B1-AS1, NCF1, ME1, LINC02029, BPIFA2, EEF1A2), five (CYP1B1, ARC, ENPEP, RASD1, CYP1B1-AS1), and six (CYP1B1, CYP1B1-AS1, IRF4, ATP1B2, TIPARP, CCL22) differentially expressed genes between UPM exposed and unexposed triple co-cultured epithelium in the control, asthma, and COPD groups, respectively. PCR analysis showed that mRNA expression of BPIFA2 and ENPEP was upregulated in both asthma and COPD, while the expression of CYP1B1-AS1 and TIPARP was increased in the epithelium from COPD patients only. Biological processes changed in UPM exposed triple co-cultured epithelium were associated with epidermis development and epidermal cell differentiation in asthma and with response to toxic substances in COPD. CONCLUSIONS: The biochemical processes associated with pathophysiology of asthma and COPD impairs the airway epithelial response to UPM.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Asma/metabolismo , Células Dendríticas/metabolismo , Epitelio/metabolismo , Humanos , Macrófagos/metabolismo , Material Particulado , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN
9.
Int J Immunogenet ; 49(5): 353-363, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36036752

RESUMEN

Several single nucleotide polymorphisms (SNPs) associated with susceptibility to Hodgkin lymphoma (HL) and diffuse large B-cell lymphoma (DLBCL) have been identified. The aim of this study was to identify susceptibility loci for HL and DLBCL in Polish patients. Altogether, DLBCL (n = 218 and HL patients (n = 224) and healthy individuals (n = 1181) were recruited. Lymphoma diagnosis was based on standard criteria. Genome-wide association study (GWAS) was performed using pooled-DNA samples on llumina Infinium Omni2.5 Exome-8 v1.3, and selected loci were replicated by TaqMan SNP genotyping of individuals. GWAS detected thirteen and seven SNPs associated with DLBCL and HL, respectively. In the replication study, six and seven SNPs reached significance after correction for multiple testing in the DLBCL and HL cohorts, respectively. One and four SNPs associated with DLBCL and HL, respectively, were localized within, and two SNPs-near the major histocompatibility complex (MHC) region. In conclusion, the majority of loci associated with HL and DLBCL aetiology in previous studies have potential roles in immune function. Our pooled-DNA GWAS enabled the identification of several susceptibility loci for DLBCL and HL in the Polish population; some of them were mapped within or adjacent to the MHC, and other associated SNPs were located outside the MHC.


Asunto(s)
Estudio de Asociación del Genoma Completo , Linfoma , ADN , Predisposición Genética a la Enfermedad , Humanos , Linfoma/genética , Polonia , Polimorfismo de Nucleótido Simple
11.
Life Sci Alliance ; 5(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35354596

RESUMEN

Within the endolysosomal pathway in mammalian cells, ESCRT complexes facilitate degradation of proteins residing in endosomal membranes. Here, we show that mammalian ESCRT-I restricts the size of lysosomes and promotes degradation of proteins from lysosomal membranes, including MCOLN1, a Ca2+ channel protein. The altered lysosome morphology upon ESCRT-I depletion coincided with elevated expression of genes annotated to biogenesis of lysosomes due to prolonged activation of TFEB/TFE3 transcription factors. Lack of ESCRT-I also induced transcription of cholesterol biosynthesis genes, in response to inefficient delivery of cholesterol from endolysosomal compartments. Among factors that could possibly activate TFEB/TFE3 signaling upon ESCRT-I deficiency, we excluded lysosomal cholesterol accumulation and Ca2+-mediated dephosphorylation of TFEB/TFE3. However, we discovered that this activation occurs due to the inhibition of Rag GTPase-dependent mTORC1 pathway that specifically reduced phosphorylation of TFEB at S112. Constitutive activation of the Rag GTPase complex in cells lacking ESCRT-I restored S112 phosphorylation and prevented TFEB/TFE3 activation. Our results indicate that ESCRT-I deficiency evokes a homeostatic response to counteract lysosomal nutrient starvation, that is, improper supply of nutrients derived from lysosomal degradation.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Complejos de Clasificación Endosomal Requeridos para el Transporte , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal
12.
J Clin Pathol ; 75(5): 324-332, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33692092

RESUMEN

AIMS: Vulvar squamous cell carcinoma (VSCC) spreads early and mainly locally via direct expansion into adjacent structures, followed by lymphatic metastasis to the regional lymph nodes (LNs). In the lymphatic metastasis, cancer cells bearing CXCR4 and ACKR3 (CXCR7) receptors are recruited to the LNs that produce the CXCL12 ligand. Our study aimed to assess the role of the CXCR4/ACKR3/CXCL12 axis in VSCC progression. METHODS: Tumour and LN tissue samples were obtained from 46 patients with VSCC and 51 patients with premalignant vulvar lesions. We assessed CXCR4, ACKR3 and CXCL12 by immunohistochemistry (IHC) in the tissue samples. Additionally, CXCL12 levels were determined by ELISA in the sera of 23 patients with premalignant lesions, 37 with VSCC and 16 healthy volunteers. RESULTS: CXCR4 and ACKR3 proteins were virtually absent in vulvar precancers, while in VSCC samples the IHC staining was strong. In the LNs of patients with VSCC, 98% of metastatic cells expressed CXCR4 and 85% expressed ACKR3. Neither CXCR4 nor ACKR3 presence was correlated with tumour human papilloma virus status. Few CXCL12-positive cells were found in the analysed tissue samples, but serum CXCL12 levels were significantly increased in both patients with premalignant vulvar lesions and with VSCC compared with healthy volunteers. CONCLUSIONS: It appears that during progression and lymphatic spread of VSCC, the CXCR4/ACKR3/CXCL12 axis is activated. Moreover, our data suggest that CXCR4 antagonists merit further attention as a possible therapeutic option in patients with VSCC.


Asunto(s)
Carcinoma de Células Escamosas , Receptores CXCR , Neoplasias de la Vulva , Quimiocina CXCL12/metabolismo , Femenino , Humanos , Metástasis Linfática , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal
13.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34638546

RESUMEN

Sepsis is the leading cause of death in intensive care units worldwide. Current treatments of sepsis are largely supportive and clinical trials using specific pharmacotherapy for sepsis have failed to improve outcomes. Here, we used the lipopolysaccharide (LPS)-stimulated mouse RAW264.7 cell line and AlphaLisa assay for TNFa as a readout to perform a supervised drug repurposing screen for sepsis treatment with compounds targeting epigenetic enzymes, including kinases. We identified the SCH772984 compound, an extracellular signal-regulated kinase (ERK) 1/2 inhibitor, as an effective blocker of TNFa production in vitro. RNA-Seq of the SCH772984-treated RAW264.7 cells at 1, 4, and 24 h time points of LPS challenge followed by functional annotation of differentially expressed genes highlighted the suppression of cellular pathways related to the immune system. SCH772984 treatment improved survival in the LPS-induced lethal endotoxemia and cecal ligation and puncture (CLP) mouse models of sepsis, and reduced plasma levels of Ccl2/Mcp1. Functional analyses of RNA-seq datasets for kidney, lung, liver, and heart tissues from SCH772984-treated animals collected at 6 h and 12 h post-CLP revealed a significant downregulation of pathways related to the immune response and platelets activation but upregulation of the extracellular matrix organization and retinoic acid signaling pathways. Thus, this study defined transcriptome signatures of SCH772984 action in vitro and in vivo, an agent that has the potential to improve sepsis outcome.


Asunto(s)
Antiinflamatorios/farmacología , Endotoxemia/tratamiento farmacológico , Indazoles/farmacología , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Piperazinas/farmacología , Piridinas/farmacología , Pirrolidinas/farmacología , Triazoles/farmacología , Factor de Necrosis Tumoral alfa/biosíntesis , Animales , Línea Celular , Quimiocina CCL2/sangre , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Reposicionamiento de Medicamentos , Endotoxemia/mortalidad , Regulación de la Expresión Génica/efectos de los fármacos , Lipopolisacáridos/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Activación Plaquetaria/efectos de los fármacos , Células RAW 264.7 , Transcriptoma/genética
14.
Diagnostics (Basel) ; 11(9)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34574047

RESUMEN

Vulvar squamous cell carcinoma (VSCC) develops from high-grade squamous intraepithelial lesions (HSIL) and differentiated vulvar intraepithelial neoplasia (dVIN). This study aimed to assess the diagnostic value of circulating hsa-miR-431-5p in vulvar precancers and VSCC. Expression levels of hsa-miR-431-5p were analyzed by quantitative RT-PCR in plasma samples of 29 patients with vulvar precancers (HSIL or dVIN), 107 with VSCC as well as 15 healthy blood donors. We used hsa-miR-93-5p and hsa-miR-425-5p as normalizers. The levels of miR-431-5p were increased in the blood of patients with VSCC compared to those with vulvar precancers. Statistically significant differences in the survival rates (time to progression) were revealed for VSCC patients categorized by miR-431-5p levels. Low levels of circulating miR-431-5p were found to be indicative of unfavorable survival rates. In summary, our data reveal the diagnostic potential of circulating miR-431-5p in patients with vulvar precancers and VSCC.

15.
J Inflamm Res ; 14: 2793-2806, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234506

RESUMEN

PURPOSE: Asthma and chronic obstructive pulmonary disease (COPD) are complex and heterogeneous inflammatory diseases. We sought to investigate distinct disease profiles based on clinical, cellular and molecular data from patients with mild-to-moderate obstructive pulmonary diseases. PATIENTS AND METHODS: Patients with mild-to-moderate allergic asthma (n=30) and COPD (n=30) were prospectively recruited. Clinical characteristics and induced sputum were collected. In total, 35 mediators were assessed in induced sputum. Logistic regression analysis was conducted to identify the optimal factors that were able to discriminate between asthma and COPD. Further, the data were explored using hierarchical clustering in order to discover and compare clusters of combined samples of asthma and COPD patients. Clinical parameters, cellular composition, and sputum mediators of asthma and COPD were assessed between and within obtained clusters. RESULTS: We found five clinical and biochemical variables, namely IL-6, IL-8, CCL4, FEV1/VC ratio pre-bronchodilator (%), and sputum neutrophils (%) that differentiated asthma and COPD and were suitable for discrimination purposes. A combination of those variables yielded high sensitivity and specificity in the differentiation between asthma and COPD, although only FEV1/VC ratio pre-bronchodilator (%) proven significant in the combined model. In cluster analysis, two main clusters were identified: cluster 1, asthma predominant with evidence of eosinophilic airway inflammation and low level of Th1 and Th2 cytokines; and cluster 2, COPD predominant with elevated levels of Th1 and Th2 mediators. CONCLUSION: The inflammatory profile of sputum samples from patients with stable mild-to-moderate asthma and COPD is not disease specific, varies within the disease and might be similar between these diseases. This study highlights the need for phenotyping the mild-to-moderate stages according to their clinical and molecular features.

16.
J Clin Med ; 10(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070605

RESUMEN

The data demonstrating a correlation between sonographic markers of malignancy of thyroid cancer (TC) and its genetic status are scarce. This study aimed to assess whether the addition of genetic analysis at the preoperative step of TC patients' stratification could aid their clinical management. The material consisted of formalin-fixed paraffin-embedded tumor fragments of 49 patients who underwent thyroidectomy during the early stages of papillary TC (PTC). Tumor DNA and RNA were subjected to next-generation sequencing (NGS) on Ion Proton using the Oncomine™ Comprehensive Assay panel. We observed a significant correlation between BRAF V600E and a higher EU-TIRADS score (p-value = 0.02) with a correlation between hypoechogenicity and taller-than-wide tumor shape in analysed patients. There were no other significant associations between the identified genetic variants and other clinicopathological features. For TC patient's stratification, a strong suspicion of BRAF V600E negativity in preoperative management of TC patients could limit the over-treatment of asymptomatic, very low-risk, indolent disease and leave room for active surveillance.

17.
Biology (Basel) ; 10(6)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070617

RESUMEN

Despite great efforts, most of the genetic factors contributing to the risk of colorectal cancer (CRC) remain undetermined. Including small but homogenous populations in genome-wide association studies (GWAS) can help us discover new common risk variants specific to the studied population. In this study, including 465 CRC patients and 1548 controls, a pooled DNA samples-based GWAS was conducted in search of genetic variants associated with CRC in a Polish population. Combined with a new method of selecting single-nucleotide polymorphisms (SNPs) for verification in individual DNA samples, this approach allowed the detection of five new susceptibility loci not previously reported for CRC. The discovered loci were found to explain 10% of the overall risk of developing CRC. The strongest association was observed for rs10935945 in long non-coding RNA LINC02006 (3q25.2). Three other SNPs were also located within genes (rs17575184 in NEGR1, rs11060839 in PIWIL1, rs12935896 in BCAS3), while one was intergenic (rs9927668 at 16p13.2). An expression quantitative trait locus (eQTL) bioinformatic analysis suggested that these polymorphisms may affect transcription factor binding sites. In conclusion, four of the identified variants were located within genes likely involved in tumor invasiveness and metastasis. Therefore, they could possibly be markers of poor prognosis in CRC patients.

18.
J Cell Sci ; 134(1)2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33419951

RESUMEN

Molecular details of how endocytosis contributes to oncogenesis remain elusive. Our in silico analysis of colorectal cancer (CRC) patients revealed stage-dependent alterations in the expression of 112 endocytosis-related genes. Among them, transcription of the endosomal sorting complex required for transport (ESCRT)-I component VPS37B was decreased in the advanced stages of CRC. Expression of other ESCRT-I core subunits remained unchanged in the investigated dataset. We analyzed an independent cohort of CRC patients, which also showed reduced VPS37A mRNA and protein abundance. Transcriptomic profiling of CRC cells revealed non-redundant functions of Vps37 proteins. Knockdown of VPS37A and VPS37B triggered p21 (CDKN1A)-mediated inhibition of cell proliferation and sterile inflammatory response driven by the nuclear factor (NF)-κB transcription factor and associated with mitogen-activated protein kinase signaling. Co-silencing of VPS37C further potentiated activation of these independently induced processes. The type and magnitude of transcriptional alterations correlated with the differential ESCRT-I stability upon individual and concurrent Vps37 depletion. Our study provides novel insights into cancer cell biology by describing cellular stress responses that are associated with ESCRT-I destabilization.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Factores de Transcripción , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Humanos
19.
Cancers (Basel) ; 13(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374674

RESUMEN

Current knowledge on the biology of squamous cell vulvar carcinoma (VSCC) is limited. We aimed to identify protein markers of VSCC tumors that would permit to stratify patients by progression risk. Early-stage tumors from patients who progressed (progVSCC) and from those who were disease-free (d-fVSCC) during follow-up, along with normal vulvar tissues were examined by mass spectrometry-based proteomics. Differentially expressed proteins (DEPs) were then verified in solid tissues and blood samples of patients with VSCC tumors and vulvar premalignant lesions. In progVSCC vs. d-fVSCC tumors, the immune response was the most over-represented Gene Ontology category for the identified DEPs. Pathway profiling suggested bacterial infections to be linked to aggressive VSCC phenotypes. High Mobility Group AT-Hook 2 (HMGA2) and Proteinase 3 (PRTN3) were revealed as proteins predicting VSCC progression. HMGA2 and PRTN3 abundances are associated with an aggressive phenotype, and hold promise as markers for VSCC patient stratification. It appears that vulvovaginal microflora disturbances trigger an inflammatory response contributing to cancer progression, suggesting that bacterial rather than viral infection status should be considered in the development of targeted therapies in VSCC.

20.
Dig Dis Sci ; 65(8): 2294-2301, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31925676

RESUMEN

BACKGROUND: Pancreatic cyst fluids (PCFs) enriched in tumor-derived DNA are a potential source of new biomarkers. The study aimed to analyze germinal variants and mutational profiles of cell-free (cf)DNA shed into the cavity of pancreatic cysts. METHODS: The study cohort consisted of 71 patients who underwent endoscopic ultrasound fine-needle aspiration of PCF. Five malignant cysts, 19 intraductal papillary mucinous neoplasms (IPMNs), 11 mucinous cystic neoplasms (MCNs), eight serous cystic neoplasms (SCNs), and 28 pseudocysts were identified. The sequencing of 409 genes included in Comprehensive Cancer Panel was performed using Ion Proton System. The mutation rate of the KRAS and GNAS canonical loci was additionally determined using digital PCR. RESULTS: The number of mutations detected with NGS varied from 0 to 22 per gene, and genes with the most mutations were: TP53, KRAS, PIK3CA, GNAS, ADGRA2, and APC. The frequencies of the majority of mutations did not differ between non-malignant cystic neoplasms and pseudocysts. NGS detected KRAS mutations in malignant cysts (60%), IPMNs (32%), MCNs (64%), SCNs (13%), and pseudocysts (14%), with GNAS mutations in 20%, 26%, 27%, 13%, and 21% of samples, respectively. Digital PCR-based testing increased KRAS (68%) and GNAS (52%) mutations detection level in IPMNs, but not other cyst types. CONCLUSIONS: We demonstrate relatively high rates of somatic mutations of cancer-related genes, including KRAS and GNAS, in cfDNA isolated from PCFs irrespectively of the pancreatic cyst type. Further studies on molecular mechanisms of pancreatic cysts malignant transformation in relation to their mutational profiles are required.


Asunto(s)
Ácidos Nucleicos Libres de Células/análisis , Quiste Pancreático/química , Neoplasias Pancreáticas/diagnóstico , Adulto , Anciano , Cromograninas/genética , Análisis Mutacional de ADN , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Humanos , Masculino , Persona de Mediana Edad , Quiste Pancreático/genética , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/genética , Estudios Prospectivos , Proteínas Proto-Oncogénicas p21(ras)/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...