Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Theriogenology ; 226: 39-48, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838613

RESUMEN

Prokineticin 1 (PROK1) is an important factor in pregnancy establishment in pigs, acting at the embryo-maternal interface and the corpus luteum (CL). Estradiol-17ß (E2) is the primary pregnancy recognition signal in pigs, and its effects are augmented by luteotropic prostaglandin E2 (PGE2). On the contrary, prostaglandin F2α (PGF2α) exerts mainly a luteolytic effect. The present study aimed to elucidate whether E2, PGE2, and PGF2α regulate the expression of PROK1 and its receptors in the porcine CL and to determine the PROK1 effect on luteal endothelial cells and pathways that may be involved in this regulation. The effects of E2, PGE2, and PGF2α on the expressions of PROK1 and its receptors in the CL were studied using an in vitro model of ultrathin luteal tissue explants model. Additionally, the effects of E2 and PGE2 on the PROK1 system were determined using an in vivo approach, in which the hormones were administered into the uterine lumen to imitate their secretion by embryos. Endothelial cell proliferation was measured using the colorimetric method. E2 acting via estrogen receptors simulated the mRNA and protein expressions of PROK1 and PROKR1 in CL explants in vitro (p < 0.05). The simultaneous action of E2 with PGE2 enhanced the expression of luteal PROK1 mRNA in vitro (p < 0.05). Estradiol-17ß acting alone significantly increased PROK1 mRNA levels in vivo, whereas E2 simultaneously administered with PGE2 significantly elevated the PROK1 mRNA expression and PROKR1 mRNA and protein contents in CLs adjacent to uterine horns receiving hormonal infusion compared with CLs adjacent to placebo-treated uterine horns (p < 0.01). The PROK1 protein expression was significantly higher in the CLs of pigs treated with E2, PGE2, and E2 together with PGE2 than in the control group. PGF2α increased the PROK1 mRNA content in CLs on days 12 and 14 of the estrous cycle (p < 0.05). The expression of PROKR2 at the mRNA and protein levels remained unchanged in response to in vitro and in vivo treatments. PROK1 stimulated the proliferation of luteal endothelial cells by activating the MAPK, AKT, and mTOR pathways (p < 0.05). In summary, the luteal expressions of PROK1 and PROKR1 in early pregnancy are regulated by E2 and PGE2. PROK1 stimulates luteal angiogenesis by activating the MAPK, AKT, and mTOR pathways. The regulation of luteal PROK1 expression by PGF2α indicates PROK1's putative role during luteolysis. We conclude that PROK1-PROKR1 signaling supports luteal function during CL rescue in pregnancy in pigs.


Asunto(s)
Cuerpo Lúteo , Hormonas Gastrointestinales , Regulación de la Expresión Génica , Factor de Crecimiento Endotelial Vascular Derivado de Glándula Endocrina , Animales , Femenino , Embarazo , Cuerpo Lúteo/metabolismo , Cuerpo Lúteo/efectos de los fármacos , Dinoprost/metabolismo , Dinoprostona/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Estradiol/farmacología , Estradiol/metabolismo , Hormonas Gastrointestinales/metabolismo , Hormonas Gastrointestinales/genética , Regulación de la Expresión Génica/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Porcinos , Factor de Crecimiento Endotelial Vascular Derivado de Glándula Endocrina/metabolismo , Factor de Crecimiento Endotelial Vascular Derivado de Glándula Endocrina/genética
2.
Sci Rep ; 13(1): 5085, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991037

RESUMEN

Prokineticin 1 (PROK1) is a pleiotropic factor secreted by endocrine glands; however, its role has not been studied in the corpus luteum (CL) during pregnancy in any species. The present study aimed to investigate the contribution of PROK1 in regulating processes related to porcine CL function and regression: steroidogenesis, luteal cell apoptosis and viability, and angiogenesis. The luteal expression of PROK1 was greater on Days 12 and 14 of pregnancy compared to Day 9. PROK1 protein expression during pregnancy increased gradually and peaked on Day 14, when it was also significantly higher than that on Day 14 of the estrous cycle. Prokineticin receptor 1 (PROKR1) mRNA abundance increased on Days 12 and 14 of pregnancy, whereas PROKR2 elevated on Day 14 of the estrous cycle. PROK1, acting via PROKR1, stimulated the expression of genes involved in progesterone synthesis, as well as progesterone secretion by luteal tissue. PROK1-PROKR1 signaling reduced apoptosis and increased the viability of luteal cells. PROK1 acting through PROKR1 stimulated angiogenesis by increasing capillary-like structure formation by luteal endothelial cells and elevating angiogenin gene expression and VEGFA secretion by luteal tissue. Our results indicate that PROK1 regulates processes vital for maintaining luteal function during early pregnancy and the mid-luteal phase.


Asunto(s)
Células Lúteas , Factor de Crecimiento Endotelial Vascular Derivado de Glándula Endocrina , Embarazo , Femenino , Animales , Porcinos , Progesterona/metabolismo , Factor de Crecimiento Endotelial Vascular Derivado de Glándula Endocrina/genética , Células Endoteliales/metabolismo , Cuerpo Lúteo/metabolismo , Células Lúteas/metabolismo
3.
Mol Reprod Dev ; 90(7): 658-672, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35385215

RESUMEN

Pregnancy establishment in mammals, including pigs, requires coordinated communication between developing conceptuses (embryos with associated membranes) and the maternal organism. Porcine conceptuses signalize their presence by secreting multiple factors, of which estradiol-17ß (E2) is considered the major embryonic signal initiating the maternal recognition of pregnancy. During this time, a limited supply of prostaglandin (PGF2α) to the corpora lutea and an increased secretion of luteoprotective factors (e.g., E2 and prostaglandin E2 [PGE2]) lead to the corpus luteum's maintained function of secreting progesterone, which in turn primes the uterus for implantation. Further, embryo implantation is related to establishing an appropriate proinflammatory environment coordinated by the secretion of proinflammatory mediators including cytokines, growth factors, and lipid mediators of both endometrial and conceptus origin. The novel, dual role of PGF2α has been underlined. Recent studies involving high-throughput technologies and sophisticated experimental models identified a number of novel factors and revealed complex relationships between these factors and those already established. Hence, it seems that early pregnancy should be regarded as a sequence of processes orchestrated by pleiotropic factors that are involved in redundancy and compensatory mechanisms that preserve the essential functions critical for implantation and placenta formation. Therefore, establishing the hierarchy between all molecules present at the embryo-maternal interface is now even more challenging.


Asunto(s)
Dinoprost , Preñez , Embarazo , Femenino , Animales , Porcinos , Preñez/metabolismo , Implantación del Embrión , Prostaglandinas/metabolismo , Dinoprostona , Mamíferos
4.
Biol Reprod ; 108(1): 150-168, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36322137

RESUMEN

During early pregnancy, porcine conceptuses (the embryos with associated membranes) secrete estradiol-17ß (E2)-their major signal for maternal recognition of pregnancy-and prostaglandin E2 (PGE2). Both hormones induce prominent changes of the endometrial transcriptome in vivo. Studies on endometrial pathologies have shown that E2 affects gene expression by epigenetic mechanisms related to DNA methylation. Herein, we determined the effects of E2 and PGE2 alone, and a combined E2 + PGE2 treatment administered into the uterine lumen in vivo on the expression and activity of DNA-methyltransferases (DNMTs) and on CpG methylation patterns of selected genes in porcine endometrium. To compare the effect of treatment with the physiological effect of pregnancy, endometria from day 12 pregnant/cyclic gilts were included. Both E2 and PGE2 significantly reduced the expression of DNMTs. Likewise, the expressions of DNMT1 and DNMT3A were decreased on day 12 of pregnancy compared to the estrous cycle. DNMT activity increased in endometrial samples following E2 treatment and in gilts on day 12 of pregnancy. Treatment with E2 alone and/or simultaneously with PGE2 altered endometrial DNA methylation of CpG sites of ADAMTS20, ADH1C, BGN, PSAT1, and WNT5A. Different CpG methylation patterns of ADAMTS20, BGN, DMBT1, RASSF1, and WNT5A were found in the endometrium on day 12 of pregnancy compared to day 12 of the estrous cycle. Significant correlations were detected between CpG methylation and gene expression for ADAMTS20, ADH1C, BGN, DMBT1, PSAT1, and WNT5A. Our results indicate that CpG methylation induced by embryonic signals may contribute to regulating endometrial gene expression during pregnancy establishment.


Asunto(s)
Metilación de ADN , Endometrio , Regulación del Desarrollo de la Expresión Génica , Animales , Femenino , Embarazo , Dinoprostona/farmacología , Dinoprostona/metabolismo , Endometrio/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , ARN Mensajero/metabolismo , Porcinos
5.
Syst Biol Reprod Med ; 68(4): 239-246, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35722676

RESUMEN

This study aimed to examine the effect of vitrification on the expression of genes that are crucial for porcine early embryo development; cathepsin B (CTSB), growth differentiation factor 9 (GDF9), caudal type homeobox 2 (CDX2), and OCT-4, which play an important role in the maintenance of embryonic cell pluripotency. Their gene expression was investigated in expanded blastocysts (day 6-7) derived from in vitro matured oocytes. The quantitative real-time PCR method was used to assess the amount of relative specific transcripts in 20 vitrified (treatment group) and 32 fresh non-vitrified (control group) blastocysts. Vitrification was performed using 7.5% dimethyl sulfoxide (DMSO) plus 7.5% ethylene glycol (EG), and in the final step, 15% DMSO plus 15% EG and a 0.5 M sucrose solution and cryotop as a vitrification device. The blastocysts were warmed in 1 M, 0.5 M, and 0.25 M sucrose solution and kept in a culture medium for six hours before their fixation and further qPCR analysis. A significant upregulation in the targeted genes CTSB (p<.006), GDF9 (p<.04), and CDX2 (p<.003) was observed in the vitrified embryos compared to the fresh control group. Interestingly, the OCT-4 mRNA expression level was not affected by vitrification and remained comparable to that of the fresh non-vitrified embryos. In summary, the results of this pilot study showed, that vitrification induced substantial alteration in the expression of CTSB, GDF9, and CDX2 genes but did not influence the expression of OCT-4 gene in porcine in vitro derived blastocysts. Our data on the expression of developmentally important genes in vitrified porcine blastocyst may facilitate: (1) future improvements in culture conditions and/or cryopreservation protocol and (2) understanding the mechanism(s) of cryoinjuries inducing compromised post-thaw embryo development followed by the poor pregnancy outcome after blastocyst transfer.


Asunto(s)
Dimetilsulfóxido , Vitrificación , Animales , Blastocisto/fisiología , Criopreservación/métodos , Dimetilsulfóxido/metabolismo , Dimetilsulfóxido/farmacología , Glicol de Etileno/metabolismo , Glicol de Etileno/farmacología , Femenino , Oocitos , Proyectos Piloto , Embarazo , Sacarosa/metabolismo , Sacarosa/farmacología , Porcinos
6.
Sci Rep ; 11(1): 13715, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215801

RESUMEN

Successful pregnancy establishment in mammals depends on proper embryo-maternal communication. Prokineticin 1 (PROK1) is a secretory protein that exerts pleiotropic functions in various tissues. Despite the studies that have primarily been performed with human cell lines and mice, the function of PROK1 in trophoblasts has still not been fully elucidated. Hence, the aim of this study was to establish the role of PROK1 in trophoblasts during implantation and placentation. Prokineticin 1 mRNA was elevated in porcine trophoblasts during implantation and the early placentation period. Furthermore, we reveal that PROK1-PROKR1 signaling induces the expression of genes involved in the regulation of angiogenesis, immunological response, trophoblast cell adhesion, invasion, and proliferation, as well as stimulating phosphorylation of MAPK and PTK2. Ingenuity Pathway Analysis identified the aforementioned and also other functions associated with PROK1-regulated genes/proteins, such as cell-to-cell contact, epithelial tissue differentiation, Ca2+ release, lipid synthesis, and chemotaxis. We also showed evidence that PROK1 acting via PROKR1 increased trophoblast cell proliferation and adhesion. The PROK1-stimulated cell proliferation was mediated by PI3K/AKT/mTOR, MAPK, and cAMP, whereas adhesion was mediated by MAPK and/or PI3K/AKT signaling pathways. Concluding, our study suggests that PROK1 plays a pleiotropic role in trophoblast function during implantation and early placentation.


Asunto(s)
Implantación del Embrión , Placentación , Trofoblastos/metabolismo , Factor de Crecimiento Endotelial Vascular Derivado de Glándula Endocrina/metabolismo , Animales , Biglicano/metabolismo , Femenino , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Interleucina-11/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Embarazo , Receptores Acoplados a Proteínas G/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...