Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 682, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877299

RESUMEN

Although the gross morphology of the heart is conserved across mammals, subtle interspecific variations exist in the cardiac phenotype, which may reflect evolutionary divergence among closely-related species. Here, we compare the left ventricle (LV) across all extant members of the Hominidae taxon, using 2D echocardiography, to gain insight into the evolution of the human heart. We present compelling evidence that the human LV has diverged away from a more trabeculated phenotype present in all other great apes, towards a ventricular wall with proportionally greater compact myocardium, which was corroborated by post-mortem chimpanzee (Pan troglodytes) hearts. Speckle-tracking echocardiographic analyses identified a negative curvilinear relationship between the degree of trabeculation and LV systolic twist, revealing lower rotational mechanics in the trabeculated non-human great ape LV. This divergent evolution of the human heart may have facilitated the augmentation of cardiac output to support the metabolic and thermoregulatory demands of the human ecological niche.


Asunto(s)
Ventrículos Cardíacos , Hominidae , Fenotipo , Animales , Humanos , Ventrículos Cardíacos/anatomía & histología , Ventrículos Cardíacos/diagnóstico por imagen , Hominidae/anatomía & histología , Ecocardiografía , Evolución Biológica , Pan troglodytes/anatomía & histología , Masculino , Femenino
2.
medRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38585781

RESUMEN

Rare structural variants (SVs) - insertions, deletions, and complex rearrangements - can cause Mendelian disease, yet they remain difficult to accurately detect and interpret. We sequenced and analyzed Oxford Nanopore long-read genomes of 68 individuals from the Undiagnosed Disease Network (UDN) with no previously identified diagnostic mutations from short-read sequencing. Using our optimized SV detection pipelines and 571 control long-read genomes, we detected 716 long-read rare (MAF < 0.01) SV alleles per genome on average, achieving a 2.4x increase from short-reads. To characterize the functional effects of rare SVs, we assessed their relationship with gene expression from blood or fibroblasts from the same individuals, and found that rare SVs overlapping enhancers were enriched (LOR = 0.46) near expression outliers. We also evaluated tandem repeat expansions (TREs) and found 14 rare TREs per genome; notably these TREs were also enriched near overexpression outliers. To prioritize candidate functional SVs, we developed Watershed-SV, a probabilistic model that integrates expression data with SV-specific genomic annotations, which significantly outperforms baseline models that don't incorporate expression data. Watershed-SV identified a median of eight high-confidence functional SVs per UDN genome. Notably, this included compound heterozygous deletions in FAM177A1 shared by two siblings, which were likely causal for a rare neurodevelopmental disorder. Our observations demonstrate the promise of integrating long-read sequencing with gene expression towards improving the prioritization of functional SVs and TREs in rare disease patients.

3.
Neuron ; 112(7): 1110-1116.e5, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38301647

RESUMEN

The ε4 allele of apolipoprotein E (APOE) is the strongest genetic risk factor for sporadic Alzheimer's disease (AD). Knockdown of ε4 may provide a therapeutic strategy for AD, but the effect of APOE loss of function (LoF) on AD pathogenesis is unknown. We searched for APOE LoF variants in a large cohort of controls and patients with AD and identified seven heterozygote carriers of APOE LoF variants. Five carriers were controls (aged 71-90 years), one carrier was affected by progressive supranuclear palsy, and one carrier was affected by AD with an unremarkable age at onset of 75 years. Two APOE ε3/ε4 controls carried a stop-gain affecting ε4: one was cognitively normal at 90 years and had no neuritic plaques at autopsy; the other was cognitively healthy at 79 years, and lumbar puncture at 76 years showed normal levels of amyloid. These results suggest that ε4 drives AD risk through the gain of abnormal function and support ε4 knockdown as a viable therapeutic option.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Alelos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Genotipo , Longevidad/genética
4.
bioRxiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37745389

RESUMEN

Long-read sequencing technology has enabled variant detection in difficult-to-map regions of the genome and enabled rapid genetic diagnosis in clinical settings. Rapidly evolving third-generation sequencing platforms like Pacific Biosciences (PacBio) and Oxford nanopore technologies (ONT) are introducing newer platforms and data types. It has been demonstrated that variant calling methods based on deep neural networks can use local haplotyping information with long-reads to improve the genotyping accuracy. However, using local haplotype information creates an overhead as variant calling needs to be performed multiple times which ultimately makes it difficult to extend to new data types and platforms as they get introduced. In this work, we have developed a local haplotype approximate method that enables state-of-the-art variant calling performance with multiple sequencing platforms including PacBio Revio system, ONT R10.4 simplex and duplex data. This addition of local haplotype approximation makes DeepVariant a universal variant calling solution for long-read sequencing platforms.

5.
medRxiv ; 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37547016

RESUMEN

The ε4 allele of apolipoprotein E (APOE) is the strongest genetic risk factor for sporadic Alzheimer's Disease (AD). Knockdown of this allele may provide a therapeutic strategy for AD, but the effect of APOE loss-of-function (LoF) on AD pathogenesis is unknown. We searched for APOE LoF variants in a large cohort of older controls and patients with AD and identified six heterozygote carriers of APOE LoF variants. Five carriers were controls (ages 71-90) and one was an AD case with an unremarkable age-at-onset between 75-79. Two APOE ε3/ε4 controls (Subjects 1 and 2) carried a stop-gain affecting the ε4 allele. Subject 1 was cognitively normal at 90+ and had no neuritic plaques at autopsy. Subject 2 was cognitively healthy within the age range 75-79 and underwent lumbar puncture at between ages 75-79 with normal levels of amyloid. The results provide the strongest human genetics evidence yet available suggesting that ε4 drives AD risk through a gain of abnormal function and support knockdown of APOE ε4 or its protein product as a viable therapeutic option.

6.
medRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37461476

RESUMEN

Background and Objectives: Single nucleotide variants near TMEM106B associate with risk of frontotemporal lobar dementia with TDP-43 inclusions (FTLD-TDP) and Alzheimer's disease (AD) in genome-wide association studies (GWAS), but the causal variant at this locus remains unclear. Here we asked whether a novel structural variant on TMEM106B is the causal variant. Methods: An exploratory analysis identified structural variants on neurodegeneration-related genes. Subsequent analyses focused on an Alu element insertion on the 3'UTR of TMEM106B. This study included data from longitudinal aging and neurogenerative disease cohorts at Stanford University, case-control cohorts in the Alzheimer's Disease Sequencing Project (ADSP), and expression and proteomics data from Washington University in St. Louis (WUSTL). 432 individuals from two Stanford aging cohorts were whole-genome long-read and short-read sequenced. 16,906 samples from ADSP were short-read sequenced. Genotypes, transcriptomics, and proteomics data were available in 1,979 participants from an aging and dementia cohort at WUSTL. Selection criteria were specific to each cohort. In primary analyses, the linkage disequilibrium between the TMEM106B locus variants in the FTLD-TDP GWAS and the 3'UTR insertion was estimated. We then estimated linkage by ancestry in the ADSP and evaluated the effect of the TMEM106B lead variant on mRNA and protein levels. Results: The primary analysis included 432 participants (52.5% females, age range 45-92 years old). We identified a 316 bp Alu insertion overlapping the TMEM106B 3'UTR tightly linked with top GWAS variants rs3173615(C) and rs1990622(A). In ADSP European-ancestry participants, this insertion is in equivalent linkage with rs1990622(A) (R2=0.962, D'=0.998) and rs3173615(C) (R2=0.960, D'=0.996). In African-ancestry participants, the insertion is in stronger linkage with rs1990622(A) (R2=0.992, D'=0.998) than with rs3173615(C) (R2=0.811, D'=0.994). In public datasets, rs1990622 was consistently associated with TMEM106B protein levels but not with mRNA expression. In the WUSTL dataset, rs1990622 is associated with TMEM106B protein levels in plasma and cerebrospinal fluid, but not with TMEM106B mRNA expression. Discussion: We identified a novel Alu element insertion in the 3'UTR of TMEM106B in tight linkage with the lead FTLD-TDP risk variant. The lead variant is associated with TMEM106B protein levels, but not expression. The 3'UTR insertion is a lead candidate for the causal variant at this complex locus, pending confirmation with functional studies.

7.
Nat Commun ; 13(1): 5107, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042219

RESUMEN

The SARS-CoV-2 pandemic has differentially impacted populations across race and ethnicity. A multi-omic approach represents a powerful tool to examine risk across multi-ancestry genomes. We leverage a pandemic tracking strategy in which we sequence viral and host genomes and transcriptomes from nasopharyngeal swabs of 1049 individuals (736 SARS-CoV-2 positive and 313 SARS-CoV-2 negative) and integrate them with digital phenotypes from electronic health records from a diverse catchment area in Northern California. Genome-wide association disaggregated by admixture mapping reveals novel COVID-19-severity-associated regions containing previously reported markers of neurologic, pulmonary and viral disease susceptibility. Phylodynamic tracking of consensus viral genomes reveals no association with disease severity or inferred ancestry. Summary data from multiomic investigation reveals metagenomic and HLA associations with severe COVID-19. The wealth of data available from residual nasopharyngeal swabs in combination with clinical data abstracted automatically at scale highlights a powerful strategy for pandemic tracking, and reveals distinct epidemiologic, genetic, and biological associations for those at the highest risk.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Genoma Viral , Estudio de Asociación del Genoma Completo , Humanos , SARS-CoV-2/genética
8.
Nat Biotechnol ; 40(7): 1035-1041, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35347328

RESUMEN

Whole-genome sequencing (WGS) can identify variants that cause genetic disease, but the time required for sequencing and analysis has been a barrier to its use in acutely ill patients. In the present study, we develop an approach for ultra-rapid nanopore WGS that combines an optimized sample preparation protocol, distributing sequencing over 48 flow cells, near real-time base calling and alignment, accelerated variant calling and fast variant filtration for efficient manual review. Application to two example clinical cases identified a candidate variant in <8 h from sample preparation to variant identification. We show that this framework provides accurate variant calls and efficient prioritization, and accelerates diagnostic clinical genome sequencing twofold compared with previous approaches.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Mapeo Cromosómico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Secuenciación Completa del Genoma/métodos
11.
medRxiv ; 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32766602

RESUMEN

During COVID19 and other viral pandemics, rapid generation of host and pathogen genomic data is critical to tracking infection and informing therapies. There is an urgent need for efficient approaches to this data generation at scale. We have developed a scalable, high throughput approach to generate high fidelity low pass whole genome and HLA sequencing, viral genomes, and representation of human transcriptome from single nasopharyngeal swabs of COVID19 patients.

12.
PLoS One ; 5(4): e9948, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20376347

RESUMEN

BACKGROUND: Xenotropic murine leukemia-related retrovirus (XMRV) is a recently discovered retrovirus that has been linked to human prostate cancer and chronic fatigue syndrome (CFS). Both diseases affect a large fraction of the world population, with prostate cancer affecting one in six men, and CFS affecting an estimated 0.4 to 1% of the population. PRINCIPAL FINDINGS: Forty-five compounds, including twenty-eight drugs approved for use in humans, were evaluated against XMRV replication in vitro. We found that the retroviral integrase inhibitor, raltegravir, was potent and selective against XMRV at submicromolar concentrations, in MCF-7 and LNCaP cells, a breast cancer and prostate cancer cell line, respectively. Another integrase inhibitor, L-000870812, and two nucleoside reverse transcriptase inhibitors, zidovudine (ZDV), and tenofovir disoproxil fumarate (TDF) also inhibited XMRV replication. When combined, these drugs displayed mostly synergistic effects against this virus, suggesting that combination therapy may delay or prevent the selection of resistant viruses. CONCLUSIONS: If XMRV proves to be a causal factor in prostate cancer or CFS, these discoveries may allow for rational design of clinical trials.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Síndrome de Fatiga Crónica/virología , Gammaretrovirus/efectos de los fármacos , Neoplasias de la Próstata/virología , Pirrolidinonas/farmacología , Infecciones por Retroviridae/tratamiento farmacológico , Infecciones Tumorales por Virus/tratamiento farmacológico , Antivirales , Línea Celular Tumoral , Femenino , Humanos , Virus de la Leucemia Murina/efectos de los fármacos , Masculino , Pruebas de Sensibilidad Microbiana , Pirrolidinonas/uso terapéutico , Raltegravir Potásico , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...