RESUMEN
BH3 mimetic drugs may be useful to treat acute lymphoblastic leukemia (ALL) but the sensitivity of primary tumor cells has not been fully evaluated. Here, B-lineage ALL cell cultures derived from a set of primary tumors were studied with respect to sensitivity to the BH3 mimetics ABT-263 and ABT-199 and to Bcl-2 dependence and function. These ALL cells each expressed high levels of Bcl-2 and exhibited great sensitivity to ABT-263 and ABT-199, which induced rapid apoptotic cell death. BH3 profiling indicated that the ALL cultures were Bcl-2 dependent. Coimmunoprecipitation studies revealed a multifaceted role for Bcl-2 in binding proapoptotic partners including Bax, Bak, Bik, and Bim. ABT-263 disrupted Bcl-2:Bim interaction in cells. Mcl-1 overexpression rendered ALL cells resistant to ABT-263 and ABT-199, with Mcl-1 assuming the role of Bcl-2 in binding Bim. Freshly isolated pediatric ALL blasts also expressed high levels of Bcl-2 and exhibited high sensitivity to Bcl-2 inhibition by the BH3 mimetic compounds. Overall, our results showed that primary ALL cultures were both more sensitive to BH3 mimetics and more uniform in their response than established ALL cell lines that have been evaluated previously. Furthermore, the primary cell model characterized here offers a powerful system for preclinical testing of novel drugs and drug combinations to treat ALL.
Asunto(s)
Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sulfonamidas/farmacología , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Concentración 50 Inhibidora , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidoresRESUMEN
OBJECTIVE: B-lineage acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia in lymphatic blastic phase in adults have poor prognoses despite intensive chemotherapy. Novel targeted treatment modalities emerge, but their evaluation requires relevant in vitro models of lymphoblastic leukemia. Presently available cell lines do not fully represent this heterogeneous disease. Available in vitro culturing protocols do not support long-term proliferation of primary cells. We therefore aimed to develop a culture system that allows long-term proliferation of primary human B-lineage lymphoblastic leukemia. MATERIALS AND METHODS: Primary lymphoblastic leukemia cells were cultured in a defined serum-free medium, in the absence or presence of human hematopoietic growth factors or serum. RESULTS: In the defined serum-free medium, cells from 12 of 34 cases immediately proliferated in vitro. In the absence of hematopoietic growth factors and serum these cases proliferated for more than 1 year without signs of exhaustion. The culturing system supported different subtypes of lymphoblastic leukemia. Two chronic myeloid leukemia in lymphatic blastic phase, four bcr/abl-positive ALL, one etv6/abl-positive ALL, 2 e2a-pbx1-positive ALL, and one t(9;11)-positive ALL could be long-term expanded, as well as two ALL that displayed nontypical cytogenetics. Not all bcr/abl- or e2a-pbx1-positive ALL proliferated in vitro, demonstrating heterogeneity within these subtypes. The proliferating bcr/abl- and etv6/abl-positive cells displayed sensitivity to imatinib, demonstrating that their proliferation depended on the activity of these oncoproteins. CONCLUSION: The serum-free culturing system may be a valuable instrument in the study of ALL cell biology, as well as in the evaluation of novel targeted therapeutics.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proliferación Celular , Medio de Cultivo Libre de Suero , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Leucemia de Células B/patología , Factores de TiempoRESUMEN
In this study, we demonstrate that the synthesis and release of serine proteinases by hematopoietic cells affects the in vitro proliferation of hematopoietic progenitor cells (HPCs) in response to proteins, including hematopoietic growth factors (HGFs), transferrin, insulin, and albumin in serum-free cultures. In serum-free cultures, bone marrow mononuclear cells or the CD34- progeny of the CD34+ cells were shown to release the serine proteinases human neutrophil elastase (HNE), cathepsin G (Cath G), and proteinase 3 (Pr3). In the absence of serum, we showed that HNE, Cath G, and Pr3 rapidly and dose-dependently degraded HGF and other proteins present in the medium, resulting in decreased proliferation of HPCs. Addition of the serine proteinase inhibitors alpha1-proteinase inhibitor (alpha1-PI) or the secretory leukocyte proteinase inhibitor (SLPI), but not leupeptin, aprotinin, or AEBSF (4-[2-aminoethyl]-benzenesulfonylfluoride hydrochloride), could completely prevent the degradation of proteins relevant to the growth of hematopoietic cells. Thus, the addition of serine proteinase inhibitors like alpha1-PI or SLPI may be critical for the expansion of CD34+ cells or gene transfer into CD34+ cells or other hematopoietic cells in vitro using serum-free media under good manufacturing practice conditions.