RESUMEN
Using the Olink Explore 1536 platform, we measured 1,463 unique proteins in 303 cerebrospinal fluid (CSF) specimens from four clinical centers contributed by uninfected controls and 12 groups of people living with HIV-1 infection representing the spectrum of progressive untreated and treated chronic infection. We present three initial analyses of these measurements: an overview of the CSF protein features of the sample; correlations of the CSF proteins with CSF HIV-1 RNA and neurofilament light chain protein (NfL) concentrations; and comparison of CSF proteins in HIV-associated dementia (HAD) and neurosymptomatic CSF escape (NSE). These reveal a complex but coherent picture of CSF protein changes with highest concentrations of many proteins during CNS injury in the HAD and NSE groups and variable protein changes across the course of systemic HIV-1 progression that included two common patterns, designated as lymphoid and myeloid patterns, related to principal involvement of their underlying inflammatory cell lineages. Antiretroviral therapy reduced CSF protein perturbations, though not always to control levels. The dataset of these CSF protein measurements, along with background clinical information, is posted online. Extended studies of this unique dataset will supplement this report to provide more detailed characterization of the dynamic impact of HIV-1 infection on the CSF proteome across the spectrum of HIV-1 infection, advancing the mechanistic understanding of HIV-1-related CNS pathobiology.
Asunto(s)
Proteínas del Líquido Cefalorraquídeo , Infecciones por VIH , VIH-1 , Humanos , Infecciones por VIH/líquido cefalorraquídeo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Masculino , Femenino , Adulto , Proteínas del Líquido Cefalorraquídeo/metabolismo , Persona de Mediana Edad , Complejo SIDA Demencia/líquido cefalorraquídeo , Complejo SIDA Demencia/virología , Complejo SIDA Demencia/tratamiento farmacológico , Enfermedad Crónica , Biomarcadores/líquido cefalorraquídeoRESUMEN
Respiratory sensitization is a complex immunological process eventually leading to hypersensitivity following re-exposure to the chemical. A frequent consequence is occupational asthma, which may occur after long latency periods. Although chemical-induced respiratory hypersensitivity has been known for decades, there are currently no comprehensive and validated approaches available for the prospective identification of chemicals that induce respiratory sensitization, while the expectations of new approach methodologies (NAMs) are high. A great hope is that due to a better understanding of the molecular key events, new methods can be developed now. However, this is a big challenge due to the different chemical classes to which respiratory sensitizers belong, as well as because of the complexity of the response and the late manifestation of symptoms. In this review article, the current information on respiratory sensitization related processes is summarized by introducing it in the available adverse outcome pathway (AOP) concept. Potentially useful models for prediction are discussed. Knowledge gaps and gaps of regulatory concern are identified.
RESUMEN
Tryptophan is an essential amino acid and plays an important role in several metabolic processes relevant for the human health. As the main metabolic pathway for tryptophan along the kynurenine axis is involved in inflammatory responses, changed metabolite levels can be used to monitor inflammatory diseases such as ulcerative colitis. As a progenitor of serotonin, altered tryptophan levels have been related to several neurogenerative diseases as well as depression or anxiety. While tryptophan concentrations are commonly evaluated in serum, a non-invasive detection approach using saliva might offer significant advantages, especially during long-term treatments of patients or elderly. In order to estimate whether active transport processes for tryptophan might contribute to a potential correlation between blood and saliva tryptophan concentrations, we investigated tryptophan's transport across an established oral mucosa in vitro model. Interestingly, treatment with tryptophan revealed a concentration dependent secretion of tryptophan and the presence of a saturable transporter while transport studies with deuterated tryptophan displayed increased permeability from the saliva to the blood compartment. Protein analysis demonstrated a distinct expression of L-type amino acid transporter 1 (LAT1), the major transporter for tryptophan, and exposure to inhibitors (2 -amino-2-norbornanecarboxylic acid (BCH), L-leucine) led to increased tryptophan levels on the saliva side. Additionally, exposure to tryptophan in equilibrium studies resulted in a regulation of LAT1 at the mRNA level. The data collected in this study suggest the participation of active transport mechanisms for tryptophan across the oral mucosa epithelium. Future studies should investigate the transport of tryptophan across salivary gland epithelia in order to enable a comprehensive understanding of tryptophan exchange at the blood-saliva barrier.
RESUMEN
BACKGROUND: Reverse transcription quantitative PCR (RT-qPCR) with intercalating dyes is one of the main techniques to assess gene expression levels used in basic and applied research as well as in diagnostics. However, primer design for RT-qPCR can be complex due to the high demands on primer quality. Primers are best placed on exon junctions, should avoid polymorphic regions, be specific to the target transcripts and also prevent genomic amplification accurately, among others. Current software tools manage to meet all the necessary criteria only insufficiently. Here, we present ExonSurfer, a novel, user-friendly web-tool for qPCR primer design. RESULTS: ExonSurfer combines the different steps of the primer design process, encompassing target selection, specificity and self-complementarity assessment, and the avoidance of issues arising from polymorphisms. Amplification of potentially contaminating genomic DNA is avoided by designing primers on exon-exon junctions, moreover, a genomic alignment is performed to filter the primers accordingly and inform the user of any predicted interaction. In order to test the whole performance of the application, we designed primer pairs for 26 targets and checked both primer efficiency, amplicon melting temperature and length and confirmed the targeted amplicon by Sanger sequencing. Most of the tested primers accurately and selectively amplified the corresponding targets. CONCLUSION: ExonSurfer offers a comprehensive end-to-end primer design, guaranteeing transcript-specific amplification. The user interface is intuitive, providing essential specificity and amplicon details. The tool can also be used by command line and the source code is available. Overall, we expect ExonSurfer to facilitate RT-qPCR set-up for researchers in many fields.
Asunto(s)
Cartilla de ADN , Exones , Internet , Programas Informáticos , Cartilla de ADN/genética , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodosRESUMEN
BACKGROUND: Pneumonia is one of the most common infectious diseases, mostly caused by viruses or bacteria. In response to bacteria or viruses which are different but which also are partly overlapping, innate and adaptive immune responses are induced, which can be quantified using the determination of specific biomarkers. Among these, C-reactive protein (CRP) has been established as a marker of innate immune function, whereas Neopterin, which is mainly produced upon stimulation with interferon-gamma, reflects cellular immune activation. AIM: We investigated inflammation markers in patients with microbiologically confirmed viral or bacterial pneumonia, and studied the potential of CRP, Neopterin, and the CRP/Neopterin ratio to distinguish between viral and bacterial pathogenesis. Furthermore, we examined, how often neuropsychiatric symptoms occur in patients suffering from different kinds of pneumonia. PATIENTS AND METHOD: A total of 194 patients diagnosed with either coronavirus disease 2019 (COVID-19) (n = 63), bacterial pneumonia (n = 58), Influenza infection (n = 10), Influenza and a bacterial superinfection (n = 9), and COVID-19 patients with a bacterial superinfection (n = 54) were included in our pilot study. Clinical as well as laboratory parameters were determined shortly after admission. RESULTS: We found significantly higher CRP/Neopterin ratios in patients with bacterial pneumonia (median: 0.34) and lower CRP/Neopterin ratios in patients hospitalized with COVID-19 infection (median: 0.03; p < 0.001). Both in men and in women, the CRP/Neopterin ratio was able to distinguish between viral and bacterial pathogens, but also was able to detect bacterial super-infection (BSI) in subjects with initial viral pneumonia (p < 0.001). Patients with BSI presented with significantly lower CRP/Neopterin ratios (median 0.08) than patients with bacterial infection only (median 0.34; p < 0.001). Interestingly, COVID-19 patients had a decreased physical functioning (as reflected in the ECOG score) and a higher frequency of fatigue (84.1%) and neurological symptoms (54.8%) than patients with pneumonia, due to other underlying pathogens. Patients that reported fatigue during viral and bacterial pneumonia presented with lower CRP concentrations than patients without it. CONCLUSIONS: The CRP/Neopterin ratio is useful to differentiate between viral and bacterial pathogenesis. The occurrence of neuropsychiatric symptoms in pneumonia appears to depend on the kind of pathogen causing the infection. Lower CRP concentrations at admission appear to be related to fatigue during acute viral and bacterial infection.
RESUMEN
Using the Olink Explore 1536 platform, we measured 1,463 unique proteins in 303 cerebrospinal fluid (CSF) specimens from four clinical centers that included uninfected controls and 12 groups of people living with HIV-1 infection representing the spectrum of progressive untreated and treated chronic infection. We present three initial analyses of these measurements: an overview of the CSF protein features of the sample; correlations of the CSF proteins with CSF HIV-1 RNA and neurofilament light chain protein (NfL) concentrations; and comparison of the CSF proteins in HIV-associated dementia ( HAD ) and neurosymptomatic CSF escape ( NSE ). These reveal a complex but coherent picture of CSF protein changes that includes highest concentrations of many proteins during CNS injury in the HAD and NSE groups and variable protein changes across the course of neuroasymptomatic systemic HIV-1 progression, including two common patterns, designated as lymphoid and myeloid patterns, related to the principal involvement of their underlying inflammatory cell lineages. Antiretroviral therapy reduced CSF protein perturbations, though not always to control levels. The dataset of these CSF protein measurements, along with background clinical information, is posted online. Extended studies of this unique dataset will provide more detailed characterization of the dynamic impact of HIV-1 infection on the CSF proteome across the spectrum of HIV-1 infection, and further the mechanistic understanding of HIV-1-related CNS pathobiology.
RESUMEN
Research into the molecular basis of disease trajectory and Long-COVID is important to get insights toward underlying pathophysiological processes. The objective of this study was to investigate inflammation-mediated changes of metabolism in patients with acute COVID-19 infection and throughout a one-year follow up period. The study enrolled 34 patients with moderate to severe COVID-19 infection admitted to the University Clinic of Innsbruck in early 2020. The dynamics of multiple laboratory parameters (including inflammatory markers [C-reactive protein (CRP), interleukin-6 (IL-6), neopterin] as well as amino acids [tryptophan (Trp), phenylalanine (Phe) and tyrosine (Tyr)], and parameters of iron and vitamin B metabolism) was related to disease severity and patients' physical performance. Also, symptom load during acute illness and at approximately 60 days (FU1), and one year after symptom onset (FU2) were monitored and related with changes of the investigated laboratory parameters: During acute infection many investigated laboratory parameters were elevated (e.g., inflammatory markers, ferritin, kynurenine, phenylalanine) and enhanced tryptophan catabolism and phenylalanine accumulation were found. At FU2 nearly all laboratory markers had declined back to reference ranges. However, kynurenine/tryptophan ratio (Kyn/Trp) and the phenylalanine/tyrosine ratio (Phe/Tyr) were still exceeding the 95th percentile of healthy controls in about two thirds of our cohort at FU2. Lower tryptophan concentrations were associated with B vitamin availability (during acute infection and at FU1), patients with lower vitamin B12 levels at FU1 had a prolonged and more severe impairment of their physical functioning ability. Patients who had fully recovered (ECOG 0) presented with higher concentrations of iron parameters (ferritin, hepcidin, transferrin) and amino acids (phenylalanine, tyrosine) at FU2 compared to patients with restricted ability to work. Persistent symptoms at FU2 were tendentially associated with IFN-γ related parameters. Women were affected by long-term symptoms more frequently. Conclusively, inflammation-mediated biochemical changes appear to be related to symptoms of patients with acute and Long Covid.
Asunto(s)
Biomarcadores , COVID-19 , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Humanos , COVID-19/sangre , COVID-19/complicaciones , COVID-19/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Biomarcadores/sangre , SARS-CoV-2/aislamiento & purificación , Anciano , Adulto , Rendimiento Físico Funcional , Interleucina-6/sangre , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis , Inflamación , Triptófano/sangre , Triptófano/metabolismo , Neopterin/sangre , Fenilalanina/sangre , Fenilalanina/metabolismo , Aminoácidos/sangreRESUMEN
BACKGROUND: In military flight operations, during flights, fighter pilots constantly work under hyperoxic breathing conditions with supplemental oxygen in varying hypobaric environments. These conditions are suspected to cause oxidative stress to neuronal organ tissues. For civilian flight operations, the Federal Aviation Administration (FAA) also recommends supplemental oxygen for flying under hypobaric conditions equivalent to higher than 3048 m altitude, and has made it mandatory for conditions equivalent to more than 3657 m altitude. AIM: We hypothesized that hypobaric-hyperoxic civilian commercial and private flight conditions with supplemental oxygen in a flight simulation in a hypobaric chamber at 2500 m and 4500 m equivalent altitude would cause significant oxidative stress in healthy individuals. METHODS: Twelve healthy, COVID-19-vaccinated (third portion of vaccination 15 months before study onset) subjects (six male, six female, mean age 35.7 years) from a larger cohort were selected to perform a 3 h flight simulation in a hypobaric chamber with increasing supplemental oxygen levels (35%, 50%, 60%, and 100% fraction of inspired oxygen, FiO2, via venturi valve-equipped face mask), switching back and forth between simulated altitudes of 2500 m and 4500 m. Arterial blood pressure and oxygen saturation were constantly measured via radial catheter and blood samples for blood gases taken from the catheter at each altitude and oxygen level. Additional blood samples from the arterial catheter at baseline and 60% oxygen at both altitudes were centrifuged inside the chamber and the serum was frozen instantly at -21 °C for later analysis of the oxidative stress markers malondialdehyde low-density lipoprotein (M-LDL) and glutathione-peroxidase 1 (GPX1) via the ELISA test. RESULTS: Eleven subjects finished the study without adverse events. Whereas the partial pressure of oxygen (PO2) levels increased in the mean with increasing oxygen levels from baseline 96.2 mm mercury (mmHg) to 160.9 mmHg at 2500 m altitude and 60% FiO2 and 113.2 mmHg at 4500 m altitude and 60% FiO2, there was no significant increase in both oxidative markers from baseline to 60% FiO2 at these simulated altitudes. Some individuals had a slight increase, whereas some showed no increase at all or even a slight decrease. A moderate correlation (Pearson correlation coefficient 0.55) existed between subject age and glutathione peroxidase levels at 60% FiO2 at 4500 m altitude. CONCLUSION: Supplemental oxygen of 60% FiO2 in a flight simulation, compared to flying in cabin pressure levels equivalent to 2500 m-4500 m altitude, does not lead to a significant increase or decrease in the oxidative stress markers M-LDL and GPX1 in the serum of arterial blood.
Asunto(s)
Altitud , Estrés Oxidativo , Oxígeno , Humanos , Masculino , Femenino , Adulto , Oxígeno/metabolismo , COVID-19 , Hiperoxia/sangre , Aeronaves , Oxigenoterapia HiperbáricaRESUMEN
As a complex system governing and interconnecting numerous functions within the human body, the immune system is unsurprisingly susceptible to the impact of toxic chemicals. Toxicants can influence the immune system through a multitude of mechanisms, resulting in immunosuppression, hypersensitivity, increased risk of autoimmune diseases and cancer development. At present, the regulatory assessment of the immunotoxicity of chemicals relies heavily on rodent models and a limited number of Organisation for Economic Co-operation and Development (OECD) test guidelines, which only capture a fraction of potential toxic properties. Due to this limitation, various authorities, including the World Health Organization and the European Food Safety Authority have highlighted the need for the development of novel approaches without the use of animals for immunotoxicity testing of chemicals. In this paper, we present a concise overview of ongoing efforts dedicated to developing and standardizing methodologies for a comprehensive characterization of the immunotoxic effects of chemicals, which are performed under the EU-funded Partnership for the Assessment of Risk from Chemicals (PARC).
RESUMEN
Introduction: The Adverse Outcome Pathway (AOP) concept facilitates rapid hazard assessment for human health risks. AOPs are constantly evolving, their number is growing, and they are referenced in the AOP-Wiki database, which is supported by the OECD. Here, we present a study that aims at identifying well-defined biological areas, as well as gaps within the AOP-Wiki for future research needs. It does not intend to provide a systematic and comprehensive summary of the available literature on AOPs but summarizes and maps biological knowledge and diseases represented by the already developed AOPs (with OECD endorsed status or under validation). Methods: Knowledge from the AOP-Wiki database were extracted and prepared for analysis using a multi-step procedure. An automatic mapping of the existing information on AOPs (i.e., genes/proteins and diseases) was performed using bioinformatics tools (i.e., overrepresentation analysis using Gene Ontology and DisGeNET), allowing both the classification of AOPs and the development of AOP networks (AOPN). Results: AOPs related to diseases of the genitourinary system, neoplasms and developmental anomalies are the most frequently investigated on the AOP-Wiki. An evaluation of the three priority cases (i.e., immunotoxicity and non-genotoxic carcinogenesis, endocrine and metabolic disruption, and developmental and adult neurotoxicity) of the EU-funded PARC project (Partnership for the Risk Assessment of Chemicals) are presented. These were used to highlight under- and over-represented adverse outcomes and to identify and prioritize gaps for further research. Discussion: These results contribute to a more comprehensive understanding of the adverse effects associated with the molecular events in AOPs, and aid in refining risk assessment for stressors and mitigation strategies. Moreover, the FAIRness (i.e., data which meets principles of findability, accessibility, interoperability, and reusability (FAIR)) of the AOPs appears to be an important consideration for further development.
RESUMEN
BACKGROUND: To investigate evidence of residual viral infection, intrathecal immune activation, central nervous system (CNS) injury, and humoral responses in cerebrospinal fluid (CSF) and plasma in patients recovering from coronavirus disease 2019 (COVID-19), with or without neurocognitive post-COVID condition (PCC). METHODS: Thirty-one participants (25 with neurocognitive PCC) underwent clinical examination, lumbar puncture, and venipuncture ≥3 months after COVID-19 symptom onset. Healthy volunteers were included. CSF and plasma severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid and spike antigen (N-Ag, S-Ag), and CSF biomarkers of immune activation and neuronal injury were analyzed. RESULTS: SARS-CoV-2 N-Ag or S-Ag were undetectable in all samples and no participant had pleocytosis. We detected no significant differences in CSF and plasma cytokine concentrations, albumin ratio, IgG index, neopterin, ß2M, or in CSF biomarkers of neuronal injury and astrocytic damage. Furthermore, principal component analysis (PCA1) analysis did not indicate any significant differences between the study groups in the marker sets cytokines, neuronal markers, or anti-cytokine autoantibodies. CONCLUSIONS: We found no evidence of ongoing viral replication, immune activation, or CNS injury in plasma or CSF in patients with neurocognitive PCC compared with COVID-19 controls or healthy volunteers, suggesting that neurocognitive PCC is a consequence of events suffered during acute COVID-19 rather than persistent viral CNS infection or residual CNS inflammation.
Asunto(s)
COVID-19 , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Sistema Nervioso Central , Astrocitos , Citocinas , BiomarcadoresRESUMEN
BACKGROUND: Persistent inflammation related to aging ("inflammaging") is exacerbated by chronic infections and contributes to frailty in older adults. We hypothesized associations between Toxoplasma gondii (T. gondii), a common parasite causing an oligosymptomatic unremitting infection, and frailty, and secondarily between T. gondii and previously reported markers of immune activation in frailty. METHODS: We analyzed available demographic, social, and clinical data in Spanish and Portuguese older adults [N = 601; age: mean (SD) 77.3 (8.0); 61% women]. Plasma T. gondii immunoglobulin G (IgG) serointensity was measured with an enzyme-linked immunosorbent assay. The Fried criteria were used to define frailty status. Validated translations of Mini-Mental State Examination, Geriatric Depression Scale, and the Charlson Comorbidity Index were used to evaluate confounders. Previously analyzed biomarkers that were significantly associated with frailty in both prior reports and the current study, and also related to T. gondii serointensity, were further accounted for in multivariable logistic models with frailty as outcome. RESULTS: In T. gondii-seropositives, there was a significant positive association between T. gondii IgG serointensity and frailty, accounting for age (p = .0002), and resisting adjustment for multiple successive confounders. Among biomarkers linked with frailty, kynurenine/tryptophan and soluble tumor necrosis factor receptor II were positively associated with T. gondii serointensity in seropositives (p < .05). Associations with other biomarkers were not significant. CONCLUSIONS: This first reported association between T. gondii and frailty is limited by a cross-sectional design and warrants replication. While certain biomarkers of inflammaging were associated with both T. gondii IgG serointensity and frailty, they did not fully mediate the T. gondii-frailty association.
Asunto(s)
Fragilidad , Toxoplasma , Toxoplasmosis , Humanos , Femenino , Anciano , Masculino , Estudios Transversales , Inmunoglobulina G , Anticuerpos Antiprotozoarios , Biomarcadores , Inmunoglobulina M , Factores de RiesgoRESUMEN
PROBLEM: Pregnancy markedly modifies women's metabolism and immune functions. We hypothesized that pregnancy might alter the immune and metabolic responses to chronic Toxoplasma gondii infection in pregnancy. METHOD OF STUDY: A population of 690 pregnant Hispanic women were screened for antibodies to T. gondii and 158 women were positive (23% positivity) with 83% showing high avidity indices. These seropositive women were followed through their pregnancies with four data collection time points and a postpartum collection at two clinics in Tampa, Florida. A T. gondii seronegative group (N = 128) was randomly selected to serve as a control group and measured along pregnancy in the same way. Serum levels of tryptophan, kynurenine, and their ratio, phenylalanine, tyrosine and their ratio, neopterin, and nitrite were measured through pregnancy and the postpartum. A plasma cytokine panel (IFN-γ, TNFα, IL-2, IL-10, IL-12, IL-6, IL-17) was analyzed in parallel. RESULTS: The major findings suggest that indoleamine 2,3-dioxygenase (IDO-1) was less activated in T. gondii seropositive pregnant Hispanic women with chronic infection. Evidence for IDO-1 suppression was that tryptophan catabolism was less pronounced and there were lower levels of multiple inflammatory cytokines including IFN-γ, which is the major inducer of IDO-1, and higher nitrite concentration, a surrogate marker for nitric oxide, an inhibitor of IDO. CONCLUSIONS: Latent T. gondii infection was associated with higher plasma tryptophan levels, and lower inflammatory cytokines across pregnancy, suggesting suppression of the IDO-1 enzyme, and possible T cell exhaustion during pregnancy.
Asunto(s)
Nitritos , Toxoplasmosis , Triptófano , Femenino , Humanos , Embarazo , Anticuerpos , Citocinas , Hispánicos o Latinos , Triptófano/metabolismo , Toxoplasma , Toxoplasmosis/inmunología , Toxoplasmosis/metabolismoRESUMEN
BACKGROUND: A high prevalence of mental disorders following COVID-19 has been described. It is therefore essential to elucidate underlying biological mechanisms linking SARS-CoV-2 infection and mental health. The kynurenine and catecholamine metabolic pathways are modulated by inflammation and can affect systemic levels of serotonin and dopamine. Their activity may hence link physical disorders with mental health. We investigated factors that affect kynurenine and catecholamine pathway activity in SARS-CoV-2 infection and recovery. METHODS: The cross-sectional SIMMUN (n = 165) and longitudinal INCOV cohort (n = 167, Su et al. 2022) were analyzed. Demographic and clinical characteristic, inflammatory markers, SARS-CoV-2 infection, symptoms of depression and anxiety (HADS), and mental stress (PSS-4) served as explanatory variables. Blood serotonin and markers of kynurenine (kynurenine/tryptophan ratio), and catecholamine pathway activity (dopamine 3-O-sulfate, phenylalanine/tyrosine ratio) were modeled by multi-parameter linear regression. RESULTS: In the SIMMUN cohort, the inflammatory marker neopterin (ß = 0.47 [95% CI: 0.34-0.61]), SARS-CoV-2-positivity (0.42 [0.16-0.68]), mental stress (0.18 [0.055-0.31]), and age (0.26 [0.12-0.39]) were positively associated with the kynurenine/tryptophan ratio. The phenylalanine/tyrosine ratio was lower in SARS-CoV-2-positive than uninfected participants (-0.38 [-0.68 to -0.08]). In the INCOV cohort, markers of inflammation were associated with lower serotonin (IL6: -0.22 [-0.38 to -0.053]) and dopamine 3-O-sulfate levels (interferon-gamma: -0.15 [-0.26 to -0.036]). Serotonin (0.76 [0.34-1.2]) and dopamine 3-O-sulfate levels (0.63 [0.28-0.99]) were higher during recovery than in acute SARS-CoV-2 infection. CONCLUSION: SARS-CoV-2 infection, inflammation, age and mental stress are key independent predictors of kynurenine pathway activity, which may influence serotonin availability. The catecholamine pathway was also affected in SARS-CoV-2 infection. Altered activity of these pathways may contribute to impaired mental health following COVID-19.
Asunto(s)
COVID-19 , Quinurenina , Humanos , Quinurenina/metabolismo , Triptófano/metabolismo , Salud Mental , Serotonina/metabolismo , Estudios Transversales , SARS-CoV-2 , Inflamación , Dopamina , Fenilalanina , TirosinaRESUMEN
After COVID-19, patients have reported various complaints such as fatigue, neurological symptoms, and insomnia. Immune-mediated changes in amino acid metabolism might contribute to the development of these symptoms. Patients who had had acute, PCR-confirmed COVID-19 infection about 60 days earlier were recruited within the scope of the prospective CovILD study. We determined the inflammatory parameters and alterations in tryptophan and phenylalanine metabolism in 142 patients cross-sectionally. Symptom persistence (pain, gastrointestinal symptoms, anosmia, sleep disturbance, and neurological symptoms) and patients' physical levels of functioning were recorded. Symptoms improved in many patients after acute COVID-19 (n = 73, 51.4%). Still, a high percentage of patients had complaints, and women were affected more often. In many patients, ongoing immune activation (as indicated by high neopterin and CRP concentrations) and enhanced tryptophan catabolism were found. A higher phenylalanine to tyrosine ratio (Phe/Tyr) was found in women with a lower level of functioning. Patients who reported improvements in pain had lower Phe/Tyr ratios, while patients with improved gastrointestinal symptoms presented with higher tryptophan and kynurenine values. Our results suggest that women have persistent symptoms after COVID-19 more often than men. In addition, the physical level of functioning and the improvements in certain symptoms appear to be associated with immune-mediated changes in amino acid metabolism.
RESUMEN
Post-infectious fatigue is a common complication that can lead to decreased physical efficiency, depression, and impaired quality of life. Dysbiosis of the gut microbiota has been proposed as a contributing factor, as the gut-brain axis plays an important role in regulating physical and mental health. This pilot study aimed to investigate the severity of fatigue and depression, as well as the quality of life of 70 patients with post-infectious fatigue who received a multi-strain probiotic preparation or placebo in a double-blind, placebo-controlled trial. Patients completed questionnaires to assess their fatigue (fatigue severity scale (FSS)), mood (Beck Depression Inventory II (BDI-II)), and quality of life (short form-36 (SF-36)) at baseline and after 3 and 6 months of treatment. Routine laboratory parameters were also assessed, including immune-mediated changes in tryptophan and phenylalanine metabolism. The intervention was effective in improving fatigue, mood, and quality of life in both the probiotic and placebo groups, with greater improvements seen in the probiotic group. FSS and BDI-II scores declined significantly under treatment with both probiotics and placebo, but patients who received probiotics had significantly lower FSS (p < 0.001) and BDI-II (p < 0.001) scores after 6 months. Quality of life scores improved significantly in patients who received probiotics (p < 0.001), while patients taking a placebo only saw improvements in the "Physical limitation" and "Energy/Fatigue" subcategories. After 6 months neopterin was higher in patients receiving placebo, while no longitudinal changes in interferon-gamma mediated biochemical pathways were observed. These findings suggest that probiotics may be a promising intervention for improving the health of patients with post-infectious fatigue, potentially through modulating the gut-brain axis.
RESUMEN
Background: Fatigue, sleep disturbance, and neurological symptoms during and after COVID-19 are common and might be associated with inflammation-induced changes in tryptophan (Trp) and phenylalanine (Phe) metabolism. Aim: This pilot study investigated interferon gamma inducible biochemical pathways (namely Trp catabolism, neopterin, tyrosine [Tyr], and nitrite formation) during acute COVID-19 and reconvalescence. Patients and methods: Thirty one patients with moderate to severe COVID-19 admitted to the University Hospital of Innsbruck in early 2020 (March-May) were followed up. Neurotransmitter precursors Trp, Phe, Tyr as well as kynurenine (Kyn), neopterin, nitrite, and routine laboratory parameters were analyzed during acute infection and at a follow-up (FU) 60 days thereafter. Clinical symptoms of patients (neurological symptoms, fatigue, sleep disturbance) were recorded and associations with concentrations of laboratory parameters investigated. Results and conclusion: Almost half of the patients suffered from neurological symptoms (48.4%), the majority of patients experienced sleep difficulties (56.7%) during acute COVID-19. Fatigue was present in nearly all patients. C-reactive protein (CRP), interleukin-6 (IL-6), neopterin, Kyn, Phe concentrations were significantly increased, and Trp levels depleted during acute COVID-19. Patients with sleep impairment and neurological symptoms during acute illness presented with increased CRP and IL-6 concentrations, Trp levels were lower in patients with sleep disturbance. In general, inflammatory markers declined during reconvalescence. A high percentage of patients suffered from persistent symptoms at FU (neurological symptoms: 17.2%, fatigue: 51.7%, sleeping disturbance: 34.5%) and had higher CRP concentrations. Nitrite and Phe levels were lower in patients with sleeping difficulties at FU and Kyn/Trp ratio, as indicator of IDO activity, was significantly lower in patients with neurological symptoms compared to patients without them at FU. In summary, inflammation induced alterations of amino acid metabolism might be related to acute and persisting symptoms of COVID-19.
RESUMEN
Background: Antiretroviral therapy (ART) initiated during acute infection can potentially impact the central nervous system (CNS) reservoir, but the differential long-term effects of ART initiation during early or late chronic infection are unknown. Methods: We included neuroasymptomatic people with human immunodeficiency virus (HIV) with suppressive ART initiated during chronic (>1 year since transmission) HIV with archived cerebrospinal fluid (CSF) and serum samples after 1 and/or ≥3 years of ART from a cohort study. CSF and serum neopterin was measured using a commercial immunoassay (BRAHMS, Germany). Results: In total, 185 people with HIV (median, 79 [interquartile range, 55-128] months on ART) were included. A significant inverse correlation was found between CD4+ T-cell count and CSF neopterin only at baseline (r = -0.28, P = .002), but not after 1 (r = -0.026, P = .8) or ≥3 (r -0.063, P = .5) years of ART. No significant differences were seen in CSF or serum neopterin concentrations between different pretreatment CD4+ T-cell strata after 1 or ≥3 (median, 6.6) years of ART. Conclusions: In people with HIV initiating ART during chronic infection, occurrence of residual CNS immune activation was not correlated with pretreatment immune status, even when treatment was initiated at high CD4+ T-cell counts, suggesting that the CNS reservoir, once established, is not differentially affected by the timing of ART initiation during chronic infection.
RESUMEN
BACKGROUND: Dietary carbohydrates and fats are intrinsically correlated within the habitual diet. We aimed to disentangle the associations of starch and sucrose from those of fat, in relation to allergic sensitization, asthma and rhinoconjuctivitis prevalence in humans, and to investigate underlying mechanisms using murine models. METHODS: Epidemiological data from participants of two German birth cohorts (age 15) were used in logistic regression analyses testing cross-sectional associations of starch and sucrose (and their main dietary sources) with aeroallergen sensitization, asthma and rhinoconjunctivitis, adjusting for correlated fats (saturated, monounsaturated, omega-6 and omega-3 polyunsaturated) and other covariates. For mechanistic insights, murine models of aeroallergen-induced allergic airway inflammation (AAI) fed with a low-fat-high-sucrose or -high-starch versus a high-fat diet were used to characterize and quantify disease development. Metabolic and physiologic parameters were used to track outcomes of dietary interventions and cellular and molecular responses to monitor the development of AAI. Oxidative stress biomarkers were measured in murine sera or lung homogenates. RESULTS: We demonstrate a direct association of dietary sucrose with asthma prevalence in males, while starch was associated with higher asthma prevalence in females. In mice, high-carbohydrate feeding, despite scant metabolic effects, aggravated AAI compared to high-fat in both sexes, as displayed by humoral response, mucus hypersecretion, lung inflammatory cell infiltration and TH 2-TH 17 profiles. Compared to high-fat, high-carbohydrate intake was associated with increased pulmonary oxidative stress, signals of metabolic switch to glycolysis and decreased systemic anti-oxidative capacity. CONCLUSION: High consumption of digestible carbohydrates is associated with an increased prevalence of asthma in humans and aggravated lung allergic inflammation in mice, involving oxidative stress-related mechanisms.
Asunto(s)
Asma , Neumonía , Masculino , Femenino , Humanos , Ratones , Animales , Adolescente , Carbohidratos de la Dieta/farmacología , Prevalencia , Estudios Transversales , Asma/epidemiología , Asma/etiología , Pulmón , Inflamación , Almidón/farmacología , Sacarosa/farmacologíaRESUMEN
Phyllobilins are natural products derived from the degradation of chlorophyll, which proceeds via a common and strictly controlled pathway in higher plants. The resulting tetrapyrrolic catabolites-the phyllobilins-are ubiquitous in nature; despite their high abundance, there is still a lack of knowledge about their physiological properties. Phyllobilins are part of human nutrition and were shown to be potent antioxidants accounting with interesting physiological properties. Three different naturally occurring types of phyllobilins-a phylloleucobilin, a dioxobilin-type phylloleucobilin and a phylloxanthobilin (PxB)-were compared regarding potential antioxidative properties in a cell-free and in a cell-based antioxidant activity test system, demonstrating the strongest effect for the PxB. Moreover, the PxB was investigated for its capacity to interfere with immunoregulatory metabolic pathways of tryptophan breakdown in human blood peripheral mononuclear cells. A dose-dependent inhibition of tryptophan catabolism to kynurenine was observed, suggesting a suppressive effect on pathways of cellular immune activation. Although the exact mechanisms of immunomodulatory effects are yet unknown, these prominent bioactivities point towards health-relevant effects, which warrant further mechanistic investigations and the assessment of the in vivo extrapolatability of results. Thus, phyllobilins are a still surprisingly unexplored family of natural products that merit further investigation.