Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 32(17): e1908475, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32173920

RESUMEN

Mechanically guided, 3D assembly has attracted broad interests, owing to its compatibility with planar fabrication techniques and applicability to a diversity of geometries and length scales. Its further development requires the capability of on-demand reversible shape reconfigurations, desirable for many emerging applications (e.g., responsive metamaterials, soft robotics). Here, the design, fabrication, and modeling of soft electrothermal actuators based on laser-induced graphene (LIG) are reported and their applications in mechanically guided 3D assembly and human-soft actuators interaction are explored. Over 20 complex 3D architectures are fabricated, including reconfigurable structures that can reshape among three distinct geometries. Also, the structures capable of maintaining 3D shapes at room temperature without the need for any actuation are realized by fabricating LIG actuators at an elevated temperature. Finite element analysis can quantitatively capture key aspects that govern electrothermally controlled shape transformations, thereby providing a reliable tool for rapid design optimization. Furthermore, their applications are explored in human-soft actuators interaction, including elastic metamaterials with human gesture-controlled bandgap behaviors and soft robotic fingers which can measure electrocardiogram from humans in an on-demand fashion. Other demonstrations include artificial muscles, which can lift masses that are about 110 times of their weights and biomimetic frog tongues which can prey insects.


Asunto(s)
Grafito/química , Láseres de Gas , Robótica , Biomimética , Electromiografía , Dedos/fisiología , Análisis de Elementos Finitos , Humanos , Músculos/fisiología , Temperatura , Dispositivos Electrónicos Vestibles
2.
Proc Natl Acad Sci U S A ; 117(1): 205-213, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31871158

RESUMEN

In addition to mechanical compliance, achieving the full potential of on-skin electronics needs the introduction of other features. For example, substantial progress has been achieved in creating biodegradable, self-healing, or breathable, on-skin electronics. However, the research of making on-skin electronics with passive-cooling capabilities, which can reduce energy consumption and improve user comfort, is still rare. Herein, we report the development of multifunctional on-skin electronics, which can passively cool human bodies without needing any energy consumption. This property is inherited from multiscale porous polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) supporting substrates. The multiscale pores of SEBS substrates, with characteristic sizes ranging from around 0.2 to 7 µm, can effectively backscatter sunlight to minimize heat absorption but are too small to reflect human-body midinfrared radiation to retain heat dissipation, thereby delivering around 6 °C cooling effects under a solar intensity of 840 W⋅m-2 Other desired properties, rooted in multiscale porous SEBS substrates, include high breathability and outstanding waterproofing. The proof-of-concept bioelectronic devices include electrophysiological sensors, temperature sensors, hydration sensors, pressure sensors, and electrical stimulators, which are made via spray printing of silver nanowires on multiscale porous SEBS substrates. The devices show comparable electrical performances with conventional, rigid, nonporous ones. Also, their applications in cuffless blood pressure measurement, interactive virtual reality, and human-machine interface are demonstrated. Notably, the enabled on-skin devices are dissolvable in several organic solvents and can be recycled to reduce electronic waste and manufacturing cost. Such on-skin electronics can serve as the basis for future multifunctional smart textiles with passive-cooling functionalities.

3.
Adv Mater ; 30(50): e1804327, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30306662

RESUMEN

Soft on-skin electronics have broad applications in human healthcare, human-machine interface, robotics, and others. However, most current on-skin electronic devices are made of materials with limited gas permeability, which constrain perspiration evaporation, resulting in adverse physiological and psychological effects, limiting their long-term feasibility. In addition, the device fabrication process usually involves e-beam or photolithography, thin-film deposition, etching, and/or other complicated procedures, which are costly and time-consuming, constraining their practical applications. Here, a simple, general, and effective approach for making multifunctional on-skin electronics using porous materials with high-gas permeability, consisting of laser-patterned porous graphene as the sensing components and sugar-templated silicone elastomer sponges as the substrates, is reported. The prototype device examples include electrophysiological sensors, hydration sensors, temperature sensors, and joule-heating elements, showing signal qualities comparable to conventional, rigid, gas-impermeable devices. Moreover, the devices exhibit high water-vapor permeability (≈18 mg cm-2 h-1 ), ≈18 times higher than that of the silicone elastomers without pores, and also show high water-wicking rates after polydopamine treatment, up to 1 cm per 30 s, which is comparable to that of cotton. The on-skin devices with such attributes could facilitate perspiration transport and evaporation, and minimize discomfort and inflammation risks, thereby improving their long-term feasiblity.


Asunto(s)
Electrónica/métodos , Gases/química , Grafito/química , Fenómenos Fisiológicos de la Piel , Temperatura Corporal , Elastómeros/química , Electrónica/instrumentación , Humanos , Rayos Láser , Permeabilidad , Porosidad , Azúcares/química , Tapones Quirúrgicos de Gaza , Dispositivos Electrónicos Vestibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...