Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(6): e11633, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38919647

RESUMEN

Urban evolutionary ecology is inherently interdisciplinary. Moreover, it is a field with global significance. However, bringing researchers and resources together across fields and countries is challenging. Therefore, an online collaborative research hub, where common methods and best practices are shared among scientists from diverse geographic, ethnic, and career backgrounds would make research focused on urban evolutionary ecology more inclusive. Here, we describe a freely available online research hub for toolkits that facilitate global research in urban evolutionary ecology. We provide rationales and descriptions of toolkits for: (1) decolonizing urban evolutionary ecology; (2) identifying and fostering international collaborative partnerships; (3) common methods and freely-available datasets for trait mapping across cities; (4) common methods and freely-available datasets for cross-city evolutionary ecology experiments; and (5) best practices and freely available resources for public outreach and communication of research findings in urban evolutionary ecology. We outline how the toolkits can be accessed, archived, and modified over time in order to sustain long-term global research that will advance our understanding of urban evolutionary ecology.

2.
Ecol Evol ; 14(6): e11503, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932947

RESUMEN

Eco-evolutionary experiments are typically conducted in semi-unnatural controlled settings, such as mesocosms; yet inferences about how evolution and ecology interact in the real world would surely benefit from experiments in natural uncontrolled settings. Opportunities for such experiments are rare but do arise in the context of restoration ecology-where different "types" of a given species can be introduced into different "replicate" locations. Designing such experiments requires wrestling with consequential questions. (Q1) Which specific "types" of a focal species should be introduced to the restoration location? (Q2) How many sources of each type should be used-and should they be mixed together? (Q3) Which specific source populations should be used? (Q4) Which type(s) or population(s) should be introduced into which restoration sites? We recently grappled with these questions when designing an eco-evolutionary experiment with threespine stickleback (Gasterosteus aculeatus) introduced into nine small lakes and ponds on the Kenai Peninsula in Alaska that required restoration. After considering the options at length, we decided to use benthic versus limnetic ecotypes (Q1) to create a mixed group of colonists from four source populations of each ecotype (Q2), where ecotypes were identified based on trophic morphology (Q3), and were then introduced into nine restoration lakes scaled by lake size (Q4). We hope that outlining the alternatives and resulting choices will make the rationales clear for future studies leveraging our experiment, while also proving useful for investigators considering similar experiments in the future.

3.
Ecol Lett ; 26 Suppl 1: S127-S139, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37840026

RESUMEN

Most studies assessing rates of phenotypic change focus on population mean trait values, whereas a largely overlooked additional component is changes in population trait variation. Theoretically, eco-evolutionary dynamics mediated by such changes in trait variation could be as important as those mediated by changes in trait means. To date, however, no study has comprehensively summarised how phenotypic variation is changing in contemporary populations. Here, we explore four questions using a large database: How do changes in trait variances compare to changes in trait means? Do different human disturbances have different effects on trait variance? Do different trait types have different effects on changes in trait variance? Do studies that established a genetic basis for trait change show different patterns from those that did not? We find that changes in variation are typically small; yet we also see some very large changes associated with particular disturbances or trait types. We close by interpreting and discussing the implications of our findings in the context of eco-evolutionary studies.


Asunto(s)
Evolución Biológica , Variación Biológica Poblacional , Humanos , Fenotipo
4.
Evolution ; 77(12): 2533-2546, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-37671423

RESUMEN

Divergent natural selection should lead to adaptive radiation-that is, the rapid evolution of phenotypic and ecological diversity originating from a single clade. The drivers of adaptive radiation have often been conceptualized through the concept of "adaptive landscapes," yet formal empirical estimates of adaptive landscapes for natural adaptive radiations have proven elusive. Here, we use a 17-year dataset of Darwin's ground finches (Geospiza spp.) at an intensively studied site on Santa Cruz (Galápagos) to estimate individual apparent lifespan in relation to beak traits. We use these estimates to model a multi-species fitness landscape, which we also convert to a formal adaptive landscape. We then assess the correspondence between estimated fitness peaks and observed phenotypes for each of five phenotypic modes (G. fuliginosa, G. fortis [small and large morphotypes], G. magnirostris, and G. scandens). The fitness and adaptive landscapes show 5 and 4 peaks, respectively, and, as expected, the adaptive landscape was smoother than the fitness landscape. Each of the five phenotypic modes appeared reasonably close to the corresponding fitness peak, yet interesting deviations were also documented and examined. By estimating adaptive landscapes in an ongoing adaptive radiation, our study demonstrates their utility as a quantitative tool for exploring and predicting adaptive radiation.


Asunto(s)
Pinzones , Passeriformes , Animales , Pinzones/genética , Selección Genética , Fenotipo , Ecuador , Pico
5.
Am Nat ; 201(4): 537-556, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958004

RESUMEN

AbstractDetermining whether and how evolution is predictable is an important goal, particularly as anthropogenic disturbances lead to novel species interactions that could modify selective pressures. Here, we use a multigeneration field experiment with brown anole lizards (Anolis sagrei) to test hypotheses about the predictability of evolution. We manipulated the presence/absence of predators and competitors of A. sagrei across 16 islands in the Bahamas that had preexisting brown anole populations. Before the experiment and again after roughly five generations, we measured traits related to locomotor performance and habitat use by brown anoles and used double-digest restriction enzyme-associated DNA sequencing to estimate genome-wide changes in allele frequencies. Although previous work showed that predators and competitors had characteristic effects on brown anole behavior, diet, and population sizes, we found that evolutionary change at both phenotypic and genomic levels was difficult to forecast. Phenotypic changes were contingent on sex and habitat use, whereas genetic change was unpredictable and not measurably correlated with phenotypic changes, experimental treatments, or other environmental factors. Our work shows how differences in ecological context can alter evolutionary outcomes over short timescales and underscores the difficulty of forecasting evolutionary responses to multispecies interactions in natural conditions, even in a well-studied system with ample supporting ecological information.


Asunto(s)
Lagartos , Animales , Lagartos/genética , Ecosistema , Bahamas , Fenotipo , Dieta
6.
Ecol Evol ; 12(11): e9552, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36425909

RESUMEN

Although the field of urban evolutionary ecology has recently expanded, much progress has been made in identifying adaptations that arise as a result of selective pressures within these unique environments. However, as studies within urban environments have rapidly increased, researchers have recognized that there are challenges and opportunities in characterizing urban adaptation. Some of these challenges are a consequence of increased direct and indirect human influence, which compounds long-recognized issues with research on adaptive evolution more generally. In this perspective, we discuss several common research challenges to urban adaptation related to (1) methodological approaches, (2) trait-environment relationships and the natural history of organisms, (3) agents and targets of selection, and (4) habitat heterogeneity. Ignoring these challenges may lead to misconceptions and further impede our ability to draw conclusions regarding evolutionary and ecological processes in urban environments. Our goal is to first shed light on the conceptual challenges of conducting urban adaptation research to help avoid the propagation of these misconceptions. We further summarize potential strategies to move forward productively to construct a more comprehensive picture of urban adaptation, and discuss how urban environments also offer unique opportunities and applications for adaptation research.

7.
Ecol Evol ; 12(10): e9399, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36225827

RESUMEN

The term terroir is used in viticulture to emphasize how the biotic and abiotic characteristics of a local site influence grape physiology and thus the properties of wine. In ecology and evolution, such terroir (i.e., the effect of space or "site") is expected to play an important role in shaping phenotypic traits. Just how important is the pure spatial effect of terroir (e.g., differences between sites that persist across years) in comparison to temporal variation (e.g., differences between years that persist across sites), and the interaction between space and time (e.g., differences between sites change across years)? We answer this question by analyzing beak and body traits of 4388 medium ground finches (Geospiza fortis) collected across 10 years at three locations in Galápagos. Analyses of variance indicated that phenotypic variation was mostly explained by site for beak size (η 2 = 0.42) and body size (η 2 = 0.43), with a smaller contribution for beak shape (η 2 = 0.05) and body shape (η 2 = 0.12), but still higher compared to year and site-by-year effects. As such, the effect of terroir seems to be very strong in Darwin's finches, notwithstanding the oft-emphasized interannual variation. However, these results changed dramatically when we excluded data from Daphne Major, indicating that the strong effect of terroir was mostly driven by that particular population. These phenotypic results were largely paralleled in analyses of environmental variables (rainfall and vegetation indices) expected to shape terroir in this system. These findings affirm the evolutionary importance of terroir, while also revealing its dependence on other factors, such as geographical isolation.

8.
J Evol Biol ; 35(11): 1414-1431, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36098479

RESUMEN

Examples of parallel evolution have been crucial for our understanding of adaptation via natural selection. However, strong parallelism is not always observed even in seemingly similar environments where natural selection is expected to favour similar phenotypes. Leveraging this variation in parallelism within well-researched study systems can provide insight into the factors that contribute to variation in adaptive responses. Here we analyse the results of 36 studies reporting 446 average trait values in Trinidadian guppies, Poecilia reticulata, from different predation regimes. We examine how the extent of predator-driven phenotypic parallelism is influenced by six factors: sex, trait type, rearing environment, ecological complexity, evolutionary history, and time since colonization. Analyses show that parallel evolution in guppies is highly variable and weak on average, with only 24.7% of the variation among populations being explained by predation regime. Levels of parallelism appeared to be especially weak for colour traits, and parallelism decreased with increasing complexity of evolutionary history (i.e., when estimates of parallelism from populations within a single drainage were compared to estimates of parallelism from populations pooled between two major drainages). Suggestive - but not significant - trends that warrant further research include interactions between the sexes and different trait categories. Quantifying and accounting for these and other sources of variation among evolutionary 'replicates' can be leveraged to better understand the extent to which seemingly similar environments drive parallel and nonparallel aspects of phenotypic divergence.


Asunto(s)
Poecilia , Animales , Poecilia/fisiología , Evolución Biológica , Conducta Predatoria , Adaptación Fisiológica/genética , Selección Genética
9.
Trends Ecol Evol ; 37(11): 1006-1019, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35995606

RESUMEN

Research on the evolutionary ecology of urban areas reveals how human-induced evolutionary changes affect biodiversity and essential ecosystem services. In a rapidly urbanizing world imposing many selective pressures, a time-sensitive goal is to identify the emergent issues and research priorities that affect the ecology and evolution of species within cities. Here, we report the results of a horizon scan of research questions in urban evolutionary ecology submitted by 100 interdisciplinary scholars. We identified 30 top questions organized into six themes that highlight priorities for future research. These research questions will require methodological advances and interdisciplinary collaborations, with continued revision as the field of urban evolutionary ecology expands with the rapid growth of cities.


Asunto(s)
Ecosistema , Urbanización , Biodiversidad , Ciudades , Ecología/métodos , Humanos
10.
Mol Ecol ; 31(4): 1028-1043, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34902193

RESUMEN

Wild populations must continuously respond to environmental changes or they risk extinction. Those responses can be measured as phenotypic rates of change, which can allow us to predict contemporary adaptive responses, some of which are evolutionary. About two decades ago, a database of phenotypic rates of change in wild populations was compiled. Since then, researchers have used (and expanded) this database to examine phenotypic responses to specific types of human disturbance. Here, we update the database by adding 5675 new estimates of phenotypic change. Using this newer version of the data base, now containing 7338 estimates of phenotypic change, we revisit the conclusions of four published articles. We then synthesize the expanded database to compare rates of change across different types of human disturbance. Analyses of this expanded database suggest that: (i) a small absolute difference in rates of change exists between human disturbed and natural populations, (ii) harvesting by humans results in higher rates of change than other types of disturbance, (iii) introduced populations have increased rates of change, and (iv) body size does not increase through time. Thus, findings from earlier analyses have largely held-up in analyses of our new database that encompass a much larger breadth of species, traits, and human disturbances. Lastly, we use new analyses to explore how various types of human disturbances affect rates of phenotypic change, and we call for this database to serve as a steppingstone for further analyses to understand patterns of contemporary phenotypic change.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Fenotipo
11.
Evolution ; 74(10): 2250-2264, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32786005

RESUMEN

Negative interactions between species can generate divergent selection that causes character displacement. However, other processes cause similar divergence. We use spatial and temporal replication across island populations of Anolis lizards to assess the importance of negative interactions in driving trait shifts. Previous work showed that the establishment of Anolis sagrei on islands drove resident Anolis carolinensis to perch higher and evolve larger toepads. To further test the interaction's causality and predictability, we resurveyed a subset of islands nine years later. Anolis sagrei had established on one island between surveys. We found that A. carolinensis on this island now perch higher and have larger toepads. However, toepad morphology change on this island was not distinct from shifts on six other islands whose Anolis community composition had not changed. Thus, the presence of A. sagrei only partly explains A. carolinensis trait variation across space and time. We also found that A. carolinensis on islands with previously established A. sagrei now perch higher than a decade ago, and that current A. carolinensis perch height is correlated with A. sagrei density. Our results suggest that character displacement likely interacts with other evolutionary processes in this system, and that temporal data are key to detecting such interactions.


Asunto(s)
Conducta Animal , Evolución Biológica , Conducta Competitiva , Lagartos/anatomía & histología , Dedos del Pie/anatomía & histología , Distribución Animal , Animales , Ecosistema , Femenino , Florida , Islas , Masculino
12.
J Anim Ecol ; 89(2): 614-622, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31746013

RESUMEN

Humans exert dramatic influences upon the environment, creating novel selective pressures to which organisms must adapt. On the Galapagos, humans have established a permanent presence and have altered selective pressures through influences such as invasive predators and urbanization, affecting iconic species such as Darwin's finches. Here, I ask two key questions: (a) Does antipredator behaviour (e.g., flight initiation distance - FID) change depending on whether invasive predators are historically absent, present, or eradicated? and (b) To what degree does urbanization affect antipredator behaviour? This study is one of the first to quantify antipredator behaviour in endemic species after the eradication of invasive predators. This will help to understand the consequences of invasive predator eradication and inform conservation measures. I quantified FID, an antipredator behaviour, in the small ground finch, across multiple islands in the Galapagos that varied in the presence, absence, or successful eradication of invasive predators. On islands with human populations, I quantified FID in urban and non-urban populations of finches. FID was higher on islands with invasive predators compared to islands with no predators. On islands from which invasive predators were eradicated ~11 years previously, FID was also higher than on islands with no invasive predators. Within islands that had both urban and non-urban populations of finches, FID was lower in urban finch populations, but only above a threshold human population size. FID in larger urban areas on islands with invasive predators was similar to or lower than FID on islands with no history of invasive predators. Overall, these results suggest that invasive predators can have a lasting effect on antipredator behaviour, even after eradication. Furthermore, the effect of urbanization can strongly oppose the effect of invasive predators, reducing antipredator behaviour to levels lower than found on pristine islands with no human influences. These results improve our understanding of human influences on antipredator behaviour which can help inform future conservation and management efforts on islands.


Los humanos pueden ejercer influencias drásticas sobre el medio ambiente creando nuevas presiones selectivas a las cuales los organismos deben adaptarse. En las islas Galápagos, la presencia permanente de humanos ha alterado dichas presiones selectivas modificando factores como la introducción de depredadores y los niveles de urbanización, los mismos que podrían estar afectando a especies icónicas como lo son los pinzones de Darwin. En el presente estudio se planearon dos preguntas claves: (i) ¿el comportamiento anti-depredatorio (ej. la distancia inicial de fuga - DIF) de los pinzones varia entre sitios con presencia, ausencia histórica o erradicación de depredadores introducidos? y (ii) ¿en qué grado la urbanización afecta el comportamiento anti-depredatorio de los pinzones? Este estudio es uno de los primeros en cuantificar el comportamiento anti-depredatorio en especies endémicas después de la erradicación de depredadores invasivos, lo cual permite entender las consecuencias que pueden tener los mismos en los ecosistemas, y del mismo modo provee información valiosa para el desarrollo de medidas de conservación. Yo cuantifiqué la distancia inicial de fuga (DIF), que es un comportamiento anti-depredatorio en los pinzones de Darwin a lo largo de diferentes islas en Galápagos con presencia, ausencia y erradicación exitosa de depredadores introducidos. En islas con poblaciones humanas, comparamos la distancia inicial de fuga entre poblaciones de pinzones que viven cerca o no a zonas urbanas. La distancia inicial de fuga (DIF) de los pinzones fue mayor en las islas con presencia de depredadores introducidos en comparación con las islas en los que éstos están ausentes. Adicionalmente, en islas donde los depredadores introducidos fueron erradicados aproximadamente hace 11 años, la distancia inicial de fuga en los pinzones fue también mayor en comparación con las islas donde hay ausencia de depredadores. En las islas con poblaciones de pinzones cercanas o no a zonas urbanas, la distancia inicial de fuga fue mayor en los pinzones que viven cerca a zonas urbanas, pero solo hasta cierto límite de tamaño de población humana. Finalmente, la distancia inicial de fuga de los pinzones en áreas urbanas grandes con presencia de depredadores introducidos fue similar o menor a la distancia inicial de fuga de los pinzones en islas con ausencia histórica de depredadores introducidos. En resumen, los resultados sugieren que los depredadores introducidos pueden tener un efecto duradero en el comportamiento anti-depredatorio de los pinzones, incluso después de haber sido erradicados. Adicionalmente, el impacto de la urbanización puede tener un fuerte efecto opuesto al esperado por la presencia de depredadores introducidos, reduciendo el comportamiento anti-depredatorio de los pinzones a niveles más bajos de lo que se encuentran en islas prístinas sin presencia de influencia humana. Estos resultados nos permiten incrementar la información disponible acerca del impacto antropogénico en el comportamiento anti-depredatorio de especies endémicas, lo cual contribuirá con información relevante para el desarrollo de programas de conservación futuros y planes de manejo de especies introducidas en las islas.


Asunto(s)
Pinzones , Passeriformes , Animales , Ecuador , Humanos , Islas
13.
Evol Appl ; 12(7): 1329-1343, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31417618

RESUMEN

Urbanization is influencing patterns of biological evolution in ways that are only beginning to be explored. One potential effect of urbanization is in modifying ecological resource distributions that underlie niche differences and that thus promote and maintain species diversification. Few studies have assessed such modifications, or their potential evolutionary consequences, in the context of ongoing adaptive radiation. We study this effect in Darwin's finches on the Galápagos Islands, by quantifying feeding preferences and diet niche partitioning across sites with different degrees of urbanization. We found higher finch density in urban sites and that feeding preferences and diets at urban sites skew heavily toward human food items. Furthermore, we show that finches at urban sites appear to be accustomed to the presence of people, compared with birds at sites with few people. In addition, we found that human behavior via the tendency to feed birds at non-urban but tourist sites is likely an important driver of finch preferences for human foods. Site differences in diet and feeding behavior have resulted in larger niche breadth within finch species and wider niche overlap between species at the urban sites. Both factors effectively minimize niche differences that would otherwise facilitate interspecies coexistence. These findings suggest that both human behavior and ongoing urbanization in Galápagos are starting to erode ecological differences that promote and maintain adaptive radiation in Darwin's finches. Smoothing of adaptive landscapes underlying diversification represents a potentially important yet underappreciated consequence of urbanization. Overall, our findings accentuate the fragility of the initial stages of adaptive radiation in Darwin's finches and raise concerns about the fate of the Galápagos ecosystems in the face of increasing urbanization.

14.
Nature ; 570(7759): 58-64, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31168105

RESUMEN

Biological invasions are both a pressing environmental challenge and an opportunity to investigate fundamental ecological processes, such as the role of top predators in regulating biodiversity and food-web structure. In whole-ecosystem manipulations of small Caribbean islands on which brown anole lizards (Anolis sagrei) were the native top predator, we experimentally staged invasions by competitors (green anoles, Anolis smaragdinus) and/or new top predators (curly-tailed lizards, Leiocephalus carinatus). We show that curly-tailed lizards destabilized the coexistence of competing prey species, contrary to the classic idea of keystone predation. Fear-driven avoidance of predators collapsed the spatial and dietary niche structure that otherwise stabilized coexistence, which intensified interspecific competition within predator-free refuges and contributed to the extinction of green-anole populations on two islands. Moreover, whereas adding either green anoles or curly-tailed lizards lengthened food chains on the islands, adding both species reversed this effect-in part because the apex predators were trophic omnivores. Our results underscore the importance of top-down control in ecological communities, but show that its outcomes depend on prey behaviour, spatial structure, and omnivory. Diversity-enhancing effects of top predators cannot be assumed, and non-consumptive effects of predation risk may be a widespread constraint on species coexistence.


Asunto(s)
Biodiversidad , Cadena Alimentaria , Lagartos/fisiología , Conducta Predatoria , Animales , Evolución Biológica , Biota , Conducta Competitiva , Conducta Alimentaria , Femenino , Lagartos/clasificación , Masculino , Especificidad de la Especie , Indias Occidentales
15.
Mol Ecol ; 28(9): 2441-2450, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31021499

RESUMEN

The gut microbiota of animal hosts can be influenced by environmental factors, such as unnatural food items that are introduced by humans. Over the past 30 years, human presence has grown exponentially in the Galapagos Islands, which are home to endemic Darwin's finches. Consequently, humans have changed the environment and diet of Darwin's finches, which in turn, could affect their gut microbiota. In this study, we compared the gut microbiota of two species of Darwin's finches, small ground finches (Geospiza fuliginosa) and medium ground finches (Geospiza fortis), across sites with and without human presence, where finches prefer human-processed and natural food, respectively. We predicted that: (a) finch microbiota would differ between sites with and without humans due to differences in diet, and (b) gut microbiota of each finch species would be most similar where finches have the highest niche overlap (areas with humans) compared to the lowest niche overlap (areas without humans). We found that gut bacterial community structure differed across sites and host species. Gut bacterial diversity was most distinct between the two species at the site with human presence compared to the site without human presence, which contradicted our predictions. Within host species, medium ground finches had lower bacterial diversity at the site with human presence compared to the site without human presence and bacterial diversity of small ground finches did not differ between sites. Our results show that the gut microbiota of Darwin's finches is affected differently across sites with varying human presence.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Passeriformes/microbiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Biodiversidad , Peso Corporal , Ecosistema , Ecuador , Femenino , Pinzones/microbiología , Microbioma Gastrointestinal/genética , Humanos
16.
Ecol Evol ; 9(1): 36-51, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30680094

RESUMEN

The Trinidadian guppy is emblematic of parallel and convergent evolution, with repeated demonstrations that predation regime is a driver of adaptive trait evolution. A classic and foundational experiment in this system was conducted by John Endler 40 years ago, where male guppies placed into low-predation environments in the laboratory evolved increased color in a few generations. However, Endler's experiment did not employ the now typical design for a parallel/convergent evolution study, which would employ replicates of different ancestral lineages. We therefore implemented an experiment that seeded replicate mesocosms with small founding populations of guppies originating from high-predation populations of two very different lineages. The different mesocosms were maintained identically, and male guppy color was quantified every four months. After one year, we tested whether male color had increased, whether replicates within a lineage had parallel phenotypic trajectories, and whether the different lineages converged on a common phenotype. Results showed that male guppy color generally increased through time, primarily due to changes in melanic color, whereas the other colors showed inconsistent and highly variable trajectories. Most of the nonparallelism in phenotypic trajectories was among mesocosms containing different lineages. In addition to this mixture of parallelism and nonparallelism, convergence was not evident in that the variance in color among the mesocosms actually increased through time. We suggest that our results reflect the potential importance of high variation in female preference and stochastic processes such as drift and founder effects, both of which could be important in nature.

17.
Microbiome ; 6(1): 167, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30231937

RESUMEN

BACKGROUND: Darwin's finches are a clade of 19 species of passerine birds native to the Galápagos Islands, whose biogeography, specialized beak morphologies, and dietary choices-ranging from seeds to blood-make them a classic example of adaptive radiation. While these iconic birds have been intensely studied, the composition of their gut microbiome and the factors influencing it, including host species, diet, and biogeography, has not yet been explored. RESULTS: We characterized the microbial community associated with 12 species of Darwin's finches using high-throughput 16S rRNA sequencing of fecal samples from 114 individuals across nine islands, including the unusual blood-feeding vampire finch (Geospiza septentrionalis) from Darwin and Wolf Islands. The phylum-level core gut microbiome for Darwin's finches included the Firmicutes, Gammaproteobacteria, and Actinobacteria, with members of the Bacteroidetes at conspicuously low abundance. The gut microbiome was surprisingly well conserved across the diversity of finch species, with one exception-the vampire finch-which harbored bacteria that were either absent or extremely rare in other finches, including Fusobacterium, Cetobacterium, Ureaplasma, Mucispirillum, Campylobacter, and various members of the Clostridia-bacteria known from the guts of carnivorous birds and reptiles. Complementary stable isotope analysis of feathers revealed exceptionally high δ15N isotope values in the vampire finch, resembling top marine predators. The Galápagos archipelago is also known for extreme wet and dry seasons, and we observed a significant seasonal shift in the gut microbial community of five additional finch species sampled during both seasons. CONCLUSIONS: This study demonstrates the overall conservatism of the finch gut microbiome over short (< 1 Ma) divergence timescales, except in the most extreme case of dietary specialization, and elevates the evolutionary importance of seasonal shifts in driving not only species adaptation, but also gut microbiome composition.


Asunto(s)
Bacterias/aislamiento & purificación , Pinzones/microbiología , Microbioma Gastrointestinal , Animales , Bacterias/clasificación , Bacterias/genética , Evolución Biológica , Clima , ADN Bacteriano/genética , Ecuador , Heces/microbiología , Pinzones/clasificación , Pinzones/genética , Tracto Gastrointestinal/microbiología , Filogenia , ARN Ribosómico 16S/genética , Estaciones del Año
18.
Microb Ecol ; 76(4): 851-855, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29623358

RESUMEN

Over the past few decades, studies have demonstrated that the gut microbiota strongly influences the physiology, behavior, and fitness of its host. Such studies have been conducted primarily in humans and model organisms under controlled laboratory conditions. More recently, researchers have realized the importance of placing host-associated microbiota studies into a more ecological context; however, few non-destructive methods have been established to collect fecal samples from wild birds. Here, we present an inexpensive and easy-to-use kit for the non-invasive collection of feces from small birds. The portability of the collection kit makes this method amenable to field studies, especially those in remote areas. The main components of the collection kit include a flat-bottomed paper bag, a large modified weigh boat (tray), vinyl-coated hardware cloth fencing (grate), a clothespin, and a 10% bleach solution (to sterilize the tray and grate). In the paper bag, a sterile tray is placed under a small grate, which prevents the birds from contacting the feces and reduces the risk of contamination. After capture, the bird is placed in the bag for 3-5 min until it defecates. After the bird is removed from the bag, the tray is extracted and the fecal sample is moved to a collection tube and frozen or preserved. We believe that our method is an affordable and easy option for researchers studying the gut microbiota of wild birds.


Asunto(s)
Aves/microbiología , Heces/microbiología , Microbioma Gastrointestinal , Técnicas Microbiológicas/métodos , Animales , Animales Salvajes/microbiología , Técnicas Microbiológicas/economía , Técnicas Microbiológicas/instrumentación
19.
Science ; 359(6374)2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29371442

RESUMEN

The comment by Myers-Smith and Myers focuses on three main points: (i) the lack of a mechanistic explanation for climate-selection relationships, (ii) the appropriateness of the climate data used in our analysis, and (iii) our focus on estimating climate-selection relationships across (rather than within) taxonomic groups. We address these critiques in our response.


Asunto(s)
Clima , Selección Genética , Cambio Climático
20.
Science ; 355(6328): 959-962, 2017 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-28254943

RESUMEN

Climate change has the potential to affect the ecology and evolution of every species on Earth. Although the ecological consequences of climate change are increasingly well documented, the effects of climate on the key evolutionary process driving adaptation-natural selection-are largely unknown. We report that aspects of precipitation and potential evapotranspiration, along with the North Atlantic Oscillation, predicted variation in selection across plant and animal populations throughout many terrestrial biomes, whereas temperature explained little variation. By showing that selection was influenced by climate variation, our results indicate that climate change may cause widespread alterations in selection regimes, potentially shifting evolutionary trajectories at a global scale.


Asunto(s)
Adaptación Fisiológica/genética , Cambio Climático , Lluvia , Selección Genética , Animales , Invertebrados/genética , Plantas/genética , Bosque Lluvioso , Vertebrados/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...