Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; 21(8): e202401104, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38847390

RESUMEN

A remarkable enhancer of human glucocerebrosidase enzyme (GCase) was identified among a set of dihydroazulene-tagged iminosugars. An unprecedented 3.9-fold increase in GCase activity was detected on fibroblasts bearing the homozygous L444P mutation, which is frequently associated with neuronopathic Gaucher forms, and which commonly results refractory to chaperone-induced refolding.


Asunto(s)
Glucosilceramidasa , Mutación , Humanos , Glucosilceramidasa/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/antagonistas & inhibidores , Iminoazúcares/química , Iminoazúcares/farmacología , Iminoazúcares/síntesis química , Iminoazúcares/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/metabolismo , Estructura Molecular
2.
Chembiochem ; 25(1): e202300730, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37877519

RESUMEN

Engineering bioactive iminosugars with pH-responsive groups is an emerging approach to develop pharmacological chaperones (PCs) able to improve lysosomal trafficking and enzymatic activity rescue of mutated enzymes. The use of inexpensive l-malic acid allowed introduction of orthoester units into the lipophilic chain of an enantiomerically pure iminosugar affording only two diastereoisomers contrary to previous related studies. The iminosugar was prepared stereoselectively from the chiral pool (d-mannose) and chosen as the lead bioactive compound, to develop novel candidates for restoring the lysosomal enzyme glucocerebrosidase (GCase) activity. The stability of orthoester-appended iminosugars was studied by 1 H NMR spectroscopy both in neutral and acidic environments, and the loss of inhibitory activity with time in acid medium was demonstrated on cell lysates. Moreover, the ability to rescue GCase activity in the lysosomes as the result of a chaperoning effect was explored. A remarkable pharmacological chaperone activity was measured in fibroblasts hosting the homozygous L444P/L444P mutation, a cell line resistant to most PCs, besides the more commonly responding N370S mutation.


Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Humanos , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Piperidinas/farmacología , Piperidinas/metabolismo , Mutación , Fibroblastos , Concentración de Iones de Hidrógeno
3.
Org Biomol Chem ; 21(47): 9362-9371, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37975191

RESUMEN

N-Acetylgalactosamine-6-sulfatase (GALNS) is an enzyme whose deficiency is related to the lysosomal storage disease Morquio A. For the development of effective therapeutic approaches against this disease, the design of suitable enzyme enhancers (i.e. pharmacological chaperones) is fundamental. The natural substrates of GALNS are the glycosaminoglycans keratan sulfate and chondroitin 6-sulfate, which mainly display repeating units of sulfated carbohydrates. With a biomimetic approach, gold nanoparticles (AuNPs) decorated with simple monosaccharides, sulfated ligands (homoligand AuNPs), or both monosaccharides and sulfated ligands (mixed-ligand AuNPs) were designed here as multivalent inhibitors of GALNS. Among the homoligand AuNPs, the most effective inhibitors of GALNS activity are the ß-D-galactoside-coated AuNPs. In the case of mixed-ligand AuNPs, ß-D-galactosides/sulfated ligands do not show better inhibition than the ß-D-galactoside-coated AuNPs. However, a synergistic effect is observed for α-D-mannosides in a mixed-ligand coating with sulfated ligands that reduced IC50 by one order of magnitude with respect to the homoligand α-D-mannoside-coated AuNPs. SAXS experiments corroborated the association of GALNS with ß-D-galactoside AuNPs. These AuNPs are able to restore the enzyme activity by almost 2-fold after thermal denaturation, indicating a potential chaperoning activity towards GALNS. This information could be exploited for future development of nanomedicines for Morquio A. The recent implications of GALNS in cancer and neuropathic pain make these kinds of multivalent bionanomaterials of great interest towards multiple therapies.


Asunto(s)
Condroitinsulfatasas , Nanopartículas del Metal , Oro , Acetilgalactosamina , Monosacáridos , Ligandos , Sulfatos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Lisosomas
4.
Org Lett ; 25(31): 5833-5837, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37515782

RESUMEN

A novel stereoselective synthetic approach to pentahydroxyazepane iminosugars is described. The strategy relies on a key osmium-catalyzed aminohydroxylation reaction of allylic alcohols obtained via addition of vinylmagnesium bromide to a d-mannose-derived aldehyde, which forms the new C-N bond with complete regio- and stereocontrol according to the tethering approach. Subsequent intramolecular reductive amination afforded the desired azepanes. This method represents the first application of the osmium-catalyzed tethered aminohydroxylation reaction to the synthesis of iminosugars.

5.
Org Biomol Chem ; 21(21): 4491-4503, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37198937

RESUMEN

A collection of novel mono- and three-tailed derivatives based on a sugar (glucose) or an iminosugar (trihydroxy piperidine) featuring a terminal benzenesulfonamide were synthesized to investigate the so-called "sugar" and "azasugar" approach with the aim of exploring the activity and selectivity towards the inhibition of human carbonic anhydrases (hCAs). The synthetic approach relies on a general copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction followed by an amine-isothiocyanate coupling. Biological assays were used to collect subtle information on the role of these single or multiple hydrophilic chains. Among the sugar-based inhibitors, the single-tailed compound 10 was identified as a better inhibitor than the reference compound (AAZ) towards three different hCAs, while, among the three sugar tailed derivatives, potent and selective inhibition was found for compounds 25 and 26. A promising and selective inhibitory activity was discovered for the iminosugar single-tailed compound 31 towards hCA VII (Ki = 9.7 nM).


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Humanos , Estructura Molecular , Relación Estructura-Actividad , Inhibidores de Anhidrasa Carbónica/farmacología , Azúcares , Relación Dosis-Respuesta a Droga , Anhidrasas Carbónicas/metabolismo , Anhidrasa Carbónica IX/metabolismo , Bencenosulfonamidas
6.
Chemistry ; 29(19): e202203841, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36598148

RESUMEN

Piperidine-based photoswitchable derivatives have been developed as putative pharmacological chaperones for glucocerebrosidase (GCase), the defective enzyme in Gaucher disease (GD). The structure-activity study revealed that both the iminosugar and the light-sensitive azobenzene are essential features to exert inhibitory activity towards human GCase and a system with the correct inhibition trend (IC50 of the light-activated form lower than IC50 of the dark form) was identified. Kinetic analyses showed that all compounds are non-competitive inhibitors (mixed or pure) of GCase and the enzyme allosteric site involved in the interaction was identified by means of MD simulations. A moderate activity enhancement of mutant GCase assessed in GD patients' fibroblasts (ex vivo experiments) carrying the most common mutation was recorded. This promising observation paves the way for further studies to improve the benefit of the light-to-dark thermal conversion for chaperoning activity.


Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Humanos , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Pliegue de Proteína , Fibroblastos/metabolismo , Mutación , Inhibidores Enzimáticos/farmacología
7.
Molecules ; 27(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897934

RESUMEN

A general method for the synthesis of pyrrolizidine derivatives using an intramolecular hydroaminomethylation protocol (HAM) under microwave (MW) dielectric heating is reported. Starting from a 3,4-bis(benzyloxy)-2-[(benzyloxy)methyl]-5-vinylpyrrolidine, MW-assisted intramolecular HAM in the presence of gaseous H2 and CO gave the natural alkaloid hyacinthacine A2 protected as benzyl ether. The same approach gave a lentiginosine analogue starting from the corresponding vinyl N-hydroxypyrrolidine. The nature of the reaction products and the yields were strongly influenced by the relative stereochemistry of the starting pyrrolidines, as well as by the catalyst/ligand employed. The use of ethanol as a solvent provides environmentally friendly conditions, while the ligand/catalyst system can be recovered by separating the alkaloid product with an SCX column and recycling the ethanolic solution. HAM worked up to three times with the recycled catalyst solution without any significant impact on yield.


Asunto(s)
Alcaloides , Alcaloides de Pirrolicidina , Alcaloides/química , Calefacción , Ligandos , Microondas , Alcaloides de Pirrolicidina/química
8.
Molecules ; 27(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35807262

RESUMEN

GM1 gangliosidosis is a rare lysosomal disease caused by the deficiency of the enzyme ß-galactosidase (ß-Gal; GLB1; E.C. 3.2.1.23), responsible for the hydrolysis of terminal ß-galactosyl residues from GM1 ganglioside, glycoproteins, and glycosaminoglycans, such as keratan-sulfate. With the aim of identifying new pharmacological chaperones for GM1 gangliosidosis, the synthesis of five new trihydroxypiperidine iminosugars is reported in this work. The target compounds feature a pentyl alkyl chain in different positions of the piperidine ring and different absolute configurations of the alkyl chain at C-2 and the hydroxy group at C-3. The organometallic addition of a Grignard reagent onto a carbohydrate-derived nitrone in the presence or absence of a suitable Lewis Acid was exploited, providing structural diversity at C-2, followed by the ring-closure reductive amination step. An oxidation-reduction process allowed access to a different configuration at C-3. The N-pentyl trihydroxypiperidine iminosugar was also synthesized for the purpose of comparison. The biological evaluation of the newly synthesized compounds was performed on leucocyte extracts from healthy donors and identified two suitable ß-Gal inhibitors, namely compounds 10 and 12. Among these, compound 12 showed chaperoning properties since it enhanced ß-Gal activity by 40% when tested on GM1 patients bearing the p.Ile51Asn/p.Arg201His mutations.


Asunto(s)
Gangliosidosis GM1 , Gangliosidosis GM1/tratamiento farmacológico , Gangliosidosis GM1/genética , Humanos , Lisosomas , Chaperonas Moleculares/genética , Mutación , beta-Galactosidasa/química
9.
Chembiochem ; 23(11): e202200077, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35322924

RESUMEN

The synthesis of five new multivalent derivatives of a trihydroxypiperidine iminosugar was accomplished through copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction of an azido ending piperidine and several propargylated scaffolds. The resulting multivalent architectures were assayed as inhibitors of lysosomal GCase, the defective enzyme in Gaucher disease. The multivalent compounds resulted in much more potent inhibitors than a parent monovalent reference compound, thus showing a good multivalent effect. Biological investigation of these compounds as pharmacological chaperones revealed that the trivalent derivative (12) gives a 2-fold recovery of the GCase activity on Gaucher patient fibroblasts bearing the L444P/L444P mutations responsible for neuropathies. Additionally, a thermal denaturation experiment showed its ability to impart stability to the recombinant enzyme used in therapy.


Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Inhibidores Enzimáticos/farmacología , Fibroblastos , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Glucosilceramidasa/uso terapéutico , Humanos , Mutación
10.
Org Biomol Chem ; 20(8): 1637-1641, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107482

RESUMEN

Light-switchable inhibitors of the enzyme ß-glucocerebrosidase (GCase) have been developed by anchoring a specific azasugar to a dihydroazulene or an azobenzene responsive moiety. Their inhibitory effect towards human GCase, before and after irradiation are reported, and the effect on thermal denaturation of recombinant GCase and cytotoxicity were studied on selected candidates.


Asunto(s)
Compuestos Azo/farmacología , Azulenos/farmacología , Inhibidores Enzimáticos/farmacología , Glucosilceramidasa/antagonistas & inhibidores , Compuestos Azo/síntesis química , Compuestos Azo/química , Azulenos/síntesis química , Azulenos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Glucosilceramidasa/metabolismo , Humanos , Luz , Estructura Molecular , Procesos Fotoquímicos
11.
Molecules ; 26(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34641408

RESUMEN

Among carbohydrate-processing enzymes, Jack bean α-mannosidase (JBα-man) is the glycosidase with the best responsiveness to the multivalent presentation of iminosugar inhitopes. We report, in this work, the preparation of water dispersible gold nanoparticles simultaneously coated with the iminosugar deoxynojirimycin (DNJ) inhitope and simple monosaccharides (ß-d-gluco- or α-d-mannosides). The display of DNJ at the gold surface has been modulated (i) by using an amphiphilic linker longer than the aliphatic chain used for the monosaccharides and (ii) by presenting the inhitope, not only in monomeric form, but also in a trimeric fashion through combination of a dendron approach with glyconanotechnology. The latter strategy resulted in a strong enhancement of the inhibitory activity towards JBα-man, with a Ki in the nanomolar range (Ki = 84 nM), i.e., more than three orders of magnitude higher than the monovalent reference compound.


Asunto(s)
1-Desoxinojirimicina/administración & dosificación , Canavalia/enzimología , Inhibidores Enzimáticos/administración & dosificación , Oro/química , Nanopartículas del Metal/administración & dosificación , alfa-Manosidasa/antagonistas & inhibidores , 1-Desoxinojirimicina/química , Inhibidores Enzimáticos/química , Nanopartículas del Metal/química
12.
J Org Chem ; 86(18): 12745-12761, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34469155

RESUMEN

We report a straightforward synthetic strategy for the preparation of trihydroxypiperidine azasugars decorated with lipophilic chains at both the nitrogen and the adjacent carbon as potential inhibitors of the lysosomal enzyme glucocerebrosidase (GCase), which is involved in Gaucher disease. The procedure relies on the preparation of C-erythrosyl N-alkylated nitrones 10 through reaction of aldehyde 8 and primary amines 13 followed by oxidation of the imines formed in situ with the methyltrioxorhenium catalyst and urea hydrogen peroxide. The addition of octylMgBr to nitrone 10e provided access to both epimeric hydroxylamines 21 and 22 with opposite configuration at the newly created stereocenter in a stereodivergent and completely stereoselective way, depending on the absence or presence of BF3·Et2O. Final reductive amination and acetonide deprotection provided compounds 14 and 15 from low-cost d-mannose in remarkable 43 and 32% overall yields, respectively, over eight steps. The C-2 R-configured bis-alkylated trihydroxypiperidine 15 was the best ligand for GCase (IC50 = 15 µM), in agreement with MD simulations that allowed us to identify the chair conformation corresponding to the best binding affinity.


Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Aminación , Enfermedad de Gaucher/tratamiento farmacológico , Humanos , Oxidación-Reducción , Piperidinas
13.
ChemMedChem ; 16(21): 3293-3299, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34297466

RESUMEN

The sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) hydrolyzes ATP to transport Ca2+ from the cytoplasm to the sarcoplasmic reticulum (SR) lumen, thereby inducing muscle relaxation. Dysfunctional SERCA has been related to various diseases. The identification of small-molecule drugs that can activate SERCA may offer a therapeutic approach to treat pathologies connected with SERCA malfunction. Herein, we propose a method to study the mechanism of interaction between SERCA and novel SERCA activators, i. e. CDN1163, using a solid supported membrane (SSM) biosensing approach. Native SR vesicles or reconstituted proteoliposomes containing SERCA were adsorbed on the SSM and activated by ATP concentration jumps. We observed that CDN1163 reversibly interacts with SERCA and enhances ATP-dependent Ca2+ translocation. The concentration dependence of the CDN1163 effect provided an EC50 =6.0±0.3 µM. CDN1163 was shown to act directly on SERCA and to exert its stimulatory effect under physiological Ca2+ concentrations. These results suggest that CDN1163 interaction with SERCA can promote a protein conformational state that favors Ca2+ release into the SR lumen.


Asunto(s)
Aminoquinolinas/farmacología , Benzamidas/farmacología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Aminoquinolinas/química , Benzamidas/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
14.
Org Lett ; 22(22): 9041-9046, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33147974

RESUMEN

The [3,3]-sigmatropic allyl cyanate/isocyanate rearrangement of glycals in the presence of O-, N-, and C-nucleophiles afforded ß-N-glucosyl and galactosyl carbamates, ureas, and amides in good yields. The unsaturated products were elaborated to N-glycosides by dihydroxylation, to 1,3-diaminosugars by tethered aminohydroxylation, or to 1,2-diaminosugars by iteration of the sigmatropic rearrangement. This metal-free methodology represents an excellent and general method for the stereoselective synthesis of N-glycosides and diamino sugars with complete transmission of stereochemical information.

15.
Molecules ; 25(19)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023214

RESUMEN

Pharmacological chaperones (PCs) are small compounds able to rescue the activity of mutated lysosomal enzymes when used at subinhibitory concentrations. Nitrogen-containing glycomimetics such as aza- or iminosugars are known to behave as PCs for lysosomal storage disorders (LSDs). As part of our research into lysosomal sphingolipidoses inhibitors and looking in particular for new ß-galactosidase inhibitors, we report the synthesis of a series of alkylated azasugars with a relative "all-cis" configuration at the hydroxy/amine-substituted stereocenters. The novel compounds were synthesized from a common carbohydrate-derived piperidinone intermediate 8, through reductive amination or alkylation of the derived alcohol. In addition, the reaction of ketone 8 with several lithium acetylides allowed the stereoselective synthesis of new azasugars alkylated at C-3. The activity of the new compounds towards lysosomal ß-galactosidase was negligible, showing that the presence of an alkyl chain in this position is detrimental to inhibitory activity. Interestingly, 9, 10, and 12 behave as good inhibitors of lysosomal ß-glucosidase (GCase) (IC50 = 12, 6.4, and 60 µM, respectively). When tested on cell lines bearing the Gaucher mutation, they did not impart any enzyme rescue. However, altogether, the data included in this work give interesting hints for the design of novel inhibitors.


Asunto(s)
Carbohidratos/química , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Cetonas/química , Piperidinas/síntesis química , Piperidinas/farmacología , beta-Galactosidasa/antagonistas & inhibidores , beta-Glucosidasa/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Piperidinas/química
16.
ACS Med Chem Lett ; 11(5): 727-731, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32435377

RESUMEN

The synthesis of selective inhibitors of human carbonic anhydrases (hCAs) is of paramount importance to avoid side effects derived from undesired interactions with isoforms not involved in the targeted pathology, and this was partially addressed with the introduction of a sugar moiety (the so-called "sugar approach"). Since glycomimetics are considered more selective than the parent sugars in inhibiting carbohydrate-processing enzyme, we explored the possibility of further tuning the selectivity of hCAs inhibitors by combining the sulfonamide moiety with a sugar analogue residue. In particular, we report the synthesis of two novel hCAs inhibitors 2 and 3 which feature the presence of a piperidine iminosugar and an additional carbohydrate moiety derived from levoglucosenone (1), a key intermediate derived from cellulose pyrolysis. Biological assays revealed that iminosugar 2 is a very strong inhibitor of the central nervous system (CNS) abundantly expressed hCA VII (K I of 7.4 nM) and showed a remarkable selectivity profile toward this isoform. Interestingly, the presence of levoglucosenone in glycomimetic 3 imparted a strong inhibitory activity toward the tumor associated hCA IX (K I of 35.9 nM).

17.
Eur J Med Chem ; 192: 112173, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32146376

RESUMEN

The synthesis of a chemical library of multimeric pyrrolidine-based iminosugars by incorporation of three pairs of epimeric pyrrolidine-azides into different alkyne scaffolds via CuAAC is presented. The new multimers were evaluated as inhibitors of two important therapeutic enzymes, human α-galactosidase A (α-Gal A) and lysosomal ß-glucocerebrosidase (GCase). Structure-activity relationships were established focusing on the iminosugar inhitope, the valency of the dendron and the linker between the inhitope and the central scaffold. Remarkable is the result obtained in the inhibition of α-Gal A, where one of the nonavalent compounds showed potent inhibition (0.20 µM, competitive inhibition), being a 375-fold more potent inhibitor than the monovalent reference. The potential of the best α-Gal A inhibitors to act as pharmacological chaperones was analyzed by evaluating their ability to increase the activity of this enzyme in R301G fibroblasts from patients with Fabry disease, a genetic disorder related with a reduced activity of α-Gal A. The best enzyme activity enhancement was obtained for the same nonavalent compound, which increased 5.2-fold the activity of the misfolded enzyme at 2.5 µM, what constitutes the first example of a multivalent α-Gal A activity enhancer of potential interest in the treatment of Fabry disease.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Enfermedad de Fabry/tratamiento farmacológico , Glucosilceramidasa/antagonistas & inhibidores , Iminoazúcares/farmacología , Pirrolidinas/farmacología , alfa-Galactosidasa/antagonistas & inhibidores , Células Cultivadas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Enfermedad de Fabry/metabolismo , Glucosilceramidasa/metabolismo , Humanos , Iminoazúcares/síntesis química , Iminoazúcares/química , Estructura Molecular , Pirrolidinas/síntesis química , Pirrolidinas/química , Relación Estructura-Actividad , alfa-Galactosidasa/metabolismo
18.
Angew Chem Int Ed Engl ; 59(26): 10466-10469, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32191378

RESUMEN

Gaucher disease is caused by mutations in human acid ß-glucosidase or glucocerebrosidase (GCase), the enzyme responsible for hydrolysis of glucosyl ceramide in the lysosomes. Imino- and azasugars such as 1-deoxynojirimycin and isofagomine are strong inhibitors of the enzyme and are of interest in pharmacological chaperone therapy of the disease. Despite several crystal structures of the enzyme with the imino- and azasugars bound in the active site having been resolved, the actual acid-base chemistry of the binding is not known. In this study we show, using photoinduced electron transfer (PET), that 1-deoxynojirimycin and isofagomine derivatives are protonated by human acid ß-glucosidase when bound, even if they are completely unprotonated outside the enzyme. While isofagomine derivative protonation to some degree was foreshadowed by earlier crystal structures, 1-deoxynojirimycin derivatives were not believed to act as basic amines in the enzyme.


Asunto(s)
1-Desoxinojirimicina/análogos & derivados , Inhibidores Enzimáticos/química , Glucosilceramidasa/química , Iminopiranosas/química , Protones , Pruebas de Enzimas , Colorantes Fluorescentes/química , Glucosilceramidasa/antagonistas & inhibidores , Humanos , Fenantrenos/química
19.
ACS Med Chem Lett ; 10(4): 621-626, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30996807

RESUMEN

Pharmacological chaperones (PCs) are small molecules that bind and stabilize enzymes. They can rescue the enzymatic activity of misfolded or deficient enzymes when they are used at subinhibitory concentration, thus with minimal side effects. Pharmacological Chaperone Therapy (PCT) is an emerging treatment for many lysosomal storage disorders (LSDs) including Gaucher disease, the most common, which is characterized by a deficiency in the GCase enzyme. We report herein a straightforward synthetic strategy to afford C-2 substituted trihydroxypiperidines with different alkyl chains starting from low cost d-mannose. Stereoselective Grignard reagent addition onto a key nitrone intermediate in the presence or absence of a suitable Lewis acid afforded both epimers of the target compounds, after a final reductive amination-ring closure step. We show that the shift of the alkyl chain from the endocyclic nitrogen to the C-2 position leads to a considerable increase in chaperoning efficacy, affording a new compound (4a) able to induce a remarkable 1.9-fold maximal increase in GCase activity.

20.
Bioorg Chem ; 87: 534-549, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30928876

RESUMEN

The diffusion of type 2 diabetes (T2D) throughout the world represents one of the most important health problems of this century. Patients suffering from this disease can currently be treated with numerous oral anti-hyperglycaemic drugs, but none is capable of reproducing the physiological action of insulin and, in several cases, they induce severe side effects. Developing new anti-diabetic drugs remains one of the most urgent challenges of the pharmaceutical industry. Multi-target drugs could offer new therapeutic opportunities for the treatment of T2D, and the reported data on type 2 diabetic mice models indicate that these drugs could be more effective and have fewer side effects than mono-target drugs. α-Glucosidases and Protein Tyrosine Phosphatase 1B (PTP1B) are considered important targets for the treatment of T2D: the first digest oligo- and disaccharides in the gut, while the latter regulates the insulin-signaling pathway. With the aim of generating new drugs able to target both enzymes, we synthesized a series of bifunctional compounds bearing both a nitro aromatic group and an iminosugar moiety. The results of tests carried out both in vitro and in a cell-based model, show that these bifunctional compounds maintain activity on both target enzymes and, more importantly, show a good insulin-mimetic activity, increasing phosphorylation levels of Akt in the absence of insulin stimulation. These compounds could be used to develop a new generation of anti-hyperglycemic drugs useful for the treatment of patients affected by T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosidasas/antagonistas & inhibidores , Hipoglucemiantes/farmacología , Iminoazúcares/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Diabetes Mellitus Tipo 2/metabolismo , Relación Dosis-Respuesta a Droga , Glucosidasas/metabolismo , Células Hep G2 , Humanos , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Iminoazúcares/síntesis química , Iminoazúcares/química , Conformación Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...