Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 84(5): 926-937.e4, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38387461

RESUMEN

During transcription elongation, NusG aids RNA polymerase by inhibiting pausing, promoting anti-termination on rRNA operons, coupling transcription with translation on mRNA genes, and facilitating Rho-dependent termination. Despite extensive work, the in vivo functional allocation and spatial distribution of NusG remain unknown. Using single-molecule tracking and super-resolution imaging in live E. coli cells, we found NusG predominantly in a chromosome-associated population (binding to RNA polymerase in elongation complexes) and a slowly diffusing population complexed with the 30S ribosomal subunit; the latter provides a "30S-guided" path for NusG into transcription elongation. Only ∼10% of NusG is fast diffusing, with its mobility suggesting non-specific interactions with DNA for >50% of the time. Antibiotic treatments and deletion mutants revealed that chromosome-associated NusG participates mainly in rrn anti-termination within phase-separated transcriptional condensates and in transcription-translation coupling. This study illuminates the multiple roles of NusG and offers a guide on dissecting multi-functional machines via in vivo imaging.


Asunto(s)
Proteínas de Escherichia coli , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/química , Transcripción Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Factores de Elongación de Péptidos/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Bacterianas/genética
2.
Mol Cell ; 83(14): 2434-2448.e7, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37402370

RESUMEN

Insertions and deletions (indels) are common sources of structural variation, and insertions originating from spontaneous DNA lesions are frequent in cancer. We developed a highly sensitive assay called insertion and deletion sequencing (Indel-seq) to monitor rearrangements in human cells at the TRIM37 acceptor locus that reports indels stemming from experimentally induced and spontaneous genome instability. Templated insertions, which derive from sequences genome wide, require contact between donor and acceptor loci, require homologous recombination, and are stimulated by DNA end-processing. Insertions are facilitated by transcription and involve a DNA/RNA hybrid intermediate. Indel-seq reveals that insertions are generated via multiple pathways. The broken acceptor site anneals with a resected DNA break or invades the displaced strand of a transcription bubble or R-loop, followed by DNA synthesis, displacement, and then ligation by non-homologous end joining. Our studies identify transcription-coupled insertions as a critical source of spontaneous genome instability that is distinct from cut-and-paste events.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Reparación del ADN por Unión de Extremidades , ADN/genética , Inestabilidad Genómica , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Nat Struct Mol Biol ; 30(1): 99-106, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36564591

RESUMEN

Nuclear actin-based movements have been shown to orchestrate clustering of DNA double-strand breaks (DSBs) into homology-directed repair domains. Here we describe multiscale three-dimensional genome reorganization following DNA damage and analyze the contribution of the nuclear WASP-ARP2/3-actin pathway toward chromatin topology alterations and pathologic repair. Hi-C analysis reveals genome-wide, DNA damage-induced chromatin compartment flips facilitated by ARP2/3 that enrich for open, A compartments. Damage promotes interactions between DSBs, which in turn facilitate aberrant, actin-dependent intra- and inter-chromosomal rearrangements. Our work establishes that clustering of resected DSBs into repair domains by nuclear actin assembly is coordinated with multiscale alterations in genome architecture that enable homology-directed repair while also increasing nonhomologous end-joining-dependent translocation frequency.


Asunto(s)
Actinas , Translocación Genética , Humanos , Actinas/metabolismo , Polimerizacion , Cromatina , Reparación del ADN por Unión de Extremidades , Daño del ADN , Reparación del ADN
5.
Cell ; 185(6): 1052-1064.e12, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35180380

RESUMEN

SARS-CoV-2 infects less than 1% of cells in the human body, yet it can cause severe damage in a variety of organs. Thus, deciphering the non-cell-autonomous effects of SARS-CoV-2 infection is imperative for understanding the cellular and molecular disruption it elicits. Neurological and cognitive defects are among the least understood symptoms of COVID-19 patients, with olfactory dysfunction being their most common sensory deficit. Here, we show that both in humans and hamsters, SARS-CoV-2 infection causes widespread downregulation of olfactory receptors (ORs) and of their signaling components. This non-cell-autonomous effect is preceded by a dramatic reorganization of the neuronal nuclear architecture, which results in dissipation of genomic compartments harboring OR genes. Our data provide a potential mechanism by which SARS-CoV-2 infection alters the cellular morphology and the transcriptome of cells it cannot infect, offering insight to its systemic effects in olfaction and beyond.


Asunto(s)
Anosmia , COVID-19 , Animales , Cricetinae , Regulación hacia Abajo , Humanos , Receptores Odorantes , SARS-CoV-2 , Olfato
6.
J Mol Biol ; 434(2): 167330, 2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-34710399

RESUMEN

In bacteria, transcription is coupled to, and can be regulated by, translation. Although recent structural studies suggest that the N-utilization substance G (NusG) transcription factor can serve as a direct, physical link between the transcribing RNA polymerase (RNAP) and the lead ribosome, mechanistic studies investigating the potential role of NusG in mediating transcription-translation coupling are lacking. Here, we report development of a cellular extract- and reporter gene-based, in vitro biochemical system that supports transcription-translation coupling as well as the use of this system to study the role of NusG in coupling. Our findings show that NusG is required for coupling and that the enhanced gene expression that results from coupling is dependent on the ability of NusG to directly interact with the lead ribosome. Moreover, we provide strong evidence that NusG-mediated coupling enhances gene expression through a mechanism in which the lead ribosome that is tethered to the RNAP by NusG suppresses spontaneous backtracking of the RNAP on its DNA template that would otherwise inhibit transcription.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factores de Elongación de Péptidos/metabolismo , Factores de Transcripción/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Factores de Elongación de Péptidos/genética , Ribosomas/metabolismo , Factores de Transcripción/genética , Transcripción Genética
7.
iScience ; 23(8): 101352, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32726726

RESUMEN

It has been known for more than 50 years that transcription and translation are physically coupled in bacteria, but whether or not this coupling may be mediated by the two-domain protein N-utilization substance (Nus) G in Escherichia coli is still heavily debated. Here, we combine integrative structural biology and functional analyses to provide conclusive evidence that NusG can physically link transcription with translation by contacting both RNA polymerase and the ribosome. We present a cryo-electron microscopy structure of a NusG:70S ribosome complex and nuclear magnetic resonance spectroscopy data revealing simultaneous binding of NusG to RNAP and the intact 70S ribosome, providing the first direct structural evidence for NusG-mediated coupling. Furthermore, in vivo reporter assays show that recruitment of NusG occurs late in transcription and strongly depends on translation. Thus, our data suggest that coupling occurs initially via direct RNAP:ribosome contacts and is then mediated by NusG.

8.
FEBS J ; 287(24): 5439-5463, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32259346

RESUMEN

To investigate divalent metal ion (Me2+ ) requirements in electrophilic biocatalysis, we compared Mg2+ , Mn2+ , Co2+ , Zn2+ , Cu2+ , Ni2+ , Cd2+ , Ca2+ , and Fe2+ activities with 13 enzymes executing nucleotidyl and/or phosphoryl transfer. We find that each Me2+ ion was highly catalytically active with one or more of the related enzymes. This result suggests that features of Me2+ coordination at the active center, and/or the enzyme-mediated presentation of the reactants to the chelated Me2+ , rather than the nature of the Me2+ , determine the ability of the Me2+ to support catalysis. At physiological pH, all the tested Me2+ ions, with the exception of Mg2+ , produced insoluble complexes with inorganic phosphate (Pi ) and bicarbonate ( HCO3- ). These data suggest that early in the development of life, bioavailability and biocompatibility with these abundant cellular metabolites may have been decisive factors in the choice of Mg2+ as the major ion for biocatalysis. Taking into account the concentrations of inorganic ions in the ancient environment in which the first cells emerged, as inferred from the 'chemistry conservation principle', the choice of Mg2+ was predetermined prior to the origin of life.


Asunto(s)
Biocatálisis , ADN Polimerasa Dirigida por ADN/química , ARN Polimerasas Dirigidas por ADN/química , Magnesio/química , Hidrolasas Diéster Fosfóricas/química , Monoéster Fosfórico Hidrolasas/química , Secuencia de Aminoácidos , Bicarbonatos/metabolismo , Dominio Catalítico , ADN Polimerasa Dirigida por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Transporte de Electrón , Magnesio/metabolismo , Fosfatos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Homología de Secuencia
9.
Transcription ; 10(4-5): 187-194, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31668122

RESUMEN

Inorganic phosphate (Pi), a ubiquitous metabolite, is involved in all major biochemical pathways. We demonstrate that, in vitro, MgHPO4 (the intracellular Pi form) at physiological concentrations can exist in a metastable supersaturated dissolved state or as a precipitate. We have shown that in solution, MgHPO4 strongly stimulates exonuclease nascent transcript cleavage by RNA polymerase. We report here that MgHPO4 precipitate selectively and efficiently inhibits transcription initiation in vitro. In view of the MgHPO4 solubility and in vitro sensitivity of RNA synthesis to MgHPO4 precipitate, at physiological concentrations, MgHPO4 should cause a 50-98% inhibition of cellular RNA synthesis, thus exerting a strong regulatory action. The effects of Pi on transcription in vivo will, therefore, reflect the physical state of intracellular Pi.


Asunto(s)
Exonucleasas/metabolismo , Fosfatos/metabolismo , ARN Mensajero/metabolismo , Precipitación Química , ARN Polimerasas Dirigidas por ADN/metabolismo , Compuestos de Magnesio/metabolismo , Compuestos de Magnesio/farmacología , Fosfatos/farmacología , Solubilidad , Transcripción Genética/efectos de los fármacos
10.
J Biol Chem ; 294(31): 11785-11792, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31189650

RESUMEN

A better understanding of the structural basis for the preferences of RNA and DNA polymerases for nucleoside-5'-triphosphates (NTPs) could help define the catalytic mechanisms for nucleotidyl transfer during RNA and DNA synthesis and the origin of primordial nucleic acid biosynthesis. We show here that ribonucleoside-5'-diphosphates (NDPs) can be utilized as substrates by RNA polymerase (RNAP). We found that NDP incorporation is template-specific and that noncognate NDPs are not incorporated. Compared with the natural RNAP substrates, NTPs, the Km of RNAP for NDPs was increased ∼4-fold, whereas the Vmax was decreased ∼200-fold. These properties could be accounted for by molecular modeling of NTP/RNAP co-crystal structures. This finding suggested that the terminal phosphate residue in NTP (not present in NDP) is important for positioning the nucleotide for nucleolytic attack in the nucleotidyl transfer reaction. Strikingly, a mutational substitution of the active-center ßR1106 side chain involved in NTP positioning also strongly inhibited NDP-directed synthesis, even though this residue does not contact NDP. Substitutions in the structurally analogous side chain in RB69 DNA polymerase (Arg-482) and HIV reverse transcriptase (Lys-65) were previously observed to inhibit dNDP incorporation. The unexpected involvement of these residues suggests that they affect a step in catalysis common for nucleic acid polymerases. The substrate activity of NDPs with RNAP along with those reported for DNA polymerases reinforces the hypothesis that NDPs may have been used for nucleic acid biosynthesis by primordial enzymes, whose evolution then led to the use of the more complex triphosphate derivatives.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Ácidos Nucleicos/biosíntesis , Ribonucleósidos/metabolismo , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/metabolismo , Humanos , Iones/química , Cinética , Manganeso/química , Manganeso/metabolismo , Modelos Moleculares , ARN/metabolismo , Especificidad por Sustrato
11.
Curr Genet ; 65(6): 1297-1300, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31076845

RESUMEN

We use genetic assays to suggest that transcription-coupled repair or new origin formation in Escherichia coli involves removal of RNAP to create an RNA primer for DNA synthesis. Transcription factor DksA was shown to play a role in numerous reactions involving RNA polymerase. Some, but not all, of the activities of DksA at promoters or during transcription elongation require (p)ppGpp. In addition to its role during transcription, DksA is also involved in maintaining genome integrity. Cells lacking DksA are sensitive to multiple DNA damaging agents including UV light, ionizing radiation, mitomycin C, and nalidixic acid. Here, we focus on two recent studies addressing the importance of DksA in the repair of double-strand breaks (DSBs), one by Sivaramakrishnan et al. (Nature 550:214-218, 2017) and one originating in our laboratory, Myka et al. (Mol Microbiol 111:1382-1397. https://doi.org/10.1111/mmi.14227 , 2019). It appears that depending on the type and possibly location of DNA damage, DksA can play either a passive or an active role in DSB repair. The passive role relies on exclusion of anti-backtracking factors from the RNAP secondary channel. The exact mechanism of active DksA-mediated DNA repair is unknown. However, DksA was proposed to destabilize transcription complexes, thus clearing the way for recombination and DNA repair. Based on the requirement for DksA, both in repair of DSBs and the R-loop-dependent formation of new origins of DNA replication, we propose that DksA may allow for removal of RNAP without unwinding of the RNA:DNA hybrid, which can then be extended by a DNA polymerase. This mechanism obviates the need for RNAP backtracking to repair damaged DNA.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/genética , Guanosina Pentafosfato/metabolismo , Ácido Nalidíxico/farmacología , Fleomicinas/farmacología , Regiones Promotoras Genéticas , Factores de Transcripción/genética
12.
Sci Rep ; 9(1): 3925, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850627

RESUMEN

We show that transcription induced by nuclear receptors for estrogen (E2) or retinoic acid (RA) is associated with formation of chromatin loops that juxtapose the 5' end (containing the promoter) with the enhancer and the 3' polyA addition site of the target gene. We find three loop configurations which change as a function of time after induction: 1. RA or E2-induced loops which connect the 5' end, the enhancer and the 3' end of the gene, and are stabilized by RNA early after induction; 2. E2-independent loops whose stability does not require RNA; 3. Loops detected only by treatment of chromatin with RNAse H1 prior to hormonal induction. RNAse H1 digests RNA that occludes the relevant restriction sites, thus preventing detection of these loops. R-loops at the 5' and 3' ends of the RA or E2-target genes were demonstrated by immunoprecipitation with anti-DNA-RNA hybrid antibodies as well as by sensitivity to RNAse H1. The cohesin RAD21 subunit is preferentially recruited to the target sites upon RA or E2 induction of transcription. RAD21 binding to chromatin is eliminated by RNAse H1. We identified E2-induced and RNase H1-sensitive antisense RNAs located at the 5' and 3' ends of the E2-induced transcription unit which stabilize the loops and RAD21 binding to chromatin. This is the first report of chromatin loops that form after gene induction that are maintained by RNA:DNA hybrids.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Estradiol/metabolismo , ARN/metabolismo , Tretinoina/metabolismo , Caspasa 9/genética , Caveolina 1/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Estradiol/farmacología , Femenino , Humanos , Células MCF-7 , Modelos Biológicos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN/genética , Estabilidad del ARN/efectos de los fármacos , Ribonucleasa H/metabolismo , Transcripción Genética/efectos de los fármacos , Tretinoina/farmacología
13.
Mol Microbiol ; 111(5): 1382-1397, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30779388

RESUMEN

The formation of new replication origins (cSDR) and repair of DNA double-strand breaks (DSBs) in E. coli share a commonality. We find that the two processes require the RNAP-associated factor, DksA. However, whereas cSDR also relies on (p)ppGpp, the alarmone molecule is dispensable for the repair of topoisomerase type II (Top II) DNA adducts and associated DSBs. The requirement for DksA in repair of nalidixic acid (Nal)-induced DSBs or for the formation of new origins is not suppressed by a greA deletion mutation, indicating an active role of DksA rather than competition with GreA for insertion into the RNAP secondary channel. Like dksA mutations, transcription termination factor Rho mutations also confer sensitivity to Nal. The rho and dksA mutations are not epistatic, suggesting they involve different repair pathways. The roles of DksA in DSB repair and cSDR differ; certain DksA and RNAP mutants are able to support the first process, but not the latter. We suggest that new origin formation and DNA repair of protein adducts with DSBs may both involve the removal of RNAP without destruction of the RNA:DNA hybrid.


Asunto(s)
Reparación del ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Origen de Réplica , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Mutación , Transcripción Genética
14.
Sci Rep ; 8(1): 11660, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-30076330

RESUMEN

The human transcription elongation factor DSIF is highly conserved throughout all kingdoms of life and plays multiple roles during transcription. DSIF is a heterodimer, consisting of Spt4 and Spt5 that interacts with RNA polymerase II (RNAP II). DSIF binds to the elongation complex and induces promoter-proximal pausing of RNAP II. Human Spt5 consists of a NusG N-terminal (NGN) domain motif, which is followed by several KOW domains. We determined the solution structures of the human Spt5 KOW4 and the C-terminal domain by nuclear magnetic resonance spectroscopy. In addition to the typical KOW fold, the solution structure of KOW4 revealed an N-terminal four-stranded ß-sheet, previously designated as the KOW3-KOW4 linker. In solution, the C-terminus of Spt5 consists of two ß-barrel folds typical for KOW domains, designated KOW6 and KOW7. We also analysed the nucleic acid and RNAP II binding properties of the KOW domains. KOW4 variants interacted with nucleic acids, preferentially single stranded RNA, whereas no nucleic acid binding could be detected for KOW6-7. Weak binding of KOW4 to the RNAP II stalk, which is comprised of Rpb4/7, was also detected, consistent with transient interactions between Spt5 and these RNAP II subunits.


Asunto(s)
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ácidos Nucleicos/metabolismo , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Difusión , Polarización de Fluorescencia , Humanos , Espectroscopía de Resonancia Magnética , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/metabolismo , ARN Polimerasa II/metabolismo , Rotación , Soluciones , Relación Estructura-Actividad , Especificidad por Sustrato
15.
Nature ; 559(7712): 61-66, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29925947

RESUMEN

DNA double-strand breaks repaired by non-homologous end joining display limited DNA end-processing and chromosomal mobility. By contrast, double-strand breaks undergoing homology-directed repair exhibit extensive processing and enhanced motion. The molecular basis of this movement is unknown. Here, using Xenopus laevis cell-free extracts and mammalian cells, we establish that nuclear actin, WASP, and the actin-nucleating ARP2/3 complex are recruited to damaged chromatin undergoing homology-directed repair. We demonstrate that nuclear actin polymerization is required for the migration of a subset of double-strand breaks into discrete sub-nuclear clusters. Actin-driven movements specifically affect double-strand breaks repaired by homology-directed repair in G2 cell cycle phase; inhibition of actin nucleation impairs DNA end-processing and homology-directed repair. By contrast, ARP2/3 is not enriched at double-strand breaks repaired by non-homologous end joining and does not regulate non-homologous end joining. Our findings establish that nuclear actin-based mobility shapes chromatin organization by generating repair domains that are essential for homology-directed repair in eukaryotic cells.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Núcleo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Recombinación , Xenopus laevis/genética , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/antagonistas & inhibidores , Actinas/metabolismo , Animales , Extractos Celulares , Cromatina/metabolismo , Reparación del ADN por Unión de Extremidades , Femenino , Movimiento , Unión Proteica , Transporte de Proteínas , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
16.
Mol Microbiol ; 108(5): 495-504, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29575154

RESUMEN

Transcription and translation are coupled processes in bacteria. A role of transcription elongation cofactor NusG in coupling has been suggested by in vitro structural studies. NMR revealed association of the NusG carboxy-terminal domain with S10 (NusE), implying a direct role for NusG as a bridge linking RNAP and the lead ribosome. Here we present the first in vitro and in vivo evidence of full-length NusG association with mature 70S ribosomes. Binding did not require accessory factors in vitro. Mutating the NusG:S10 binding interface at NusG F165 or NusE M88 and D97 residues weakened NusG:S10 association in vivo and completely abolished it in vitro, supporting the specificity of this interaction. Mutations in the binding interface increased sensitivity to chloramphenicol. This phenotype was suppressed by rpoB*35, an RNAP mutation that reduces replisome-RNAP clashes. We propose that weakened NusG:S10 interaction leads to uncoupling when translation is inhibited, with resulting RNAP backtracking, replication blocks and formation of lethal DNA double-strand breaks.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factores de Elongación de Péptidos/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo , Terminación de la Transcripción Genética , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Sitios de Unión , Cloranfenicol/farmacología , Roturas del ADN de Doble Cadena , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutación , Factores de Elongación de Péptidos/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Elongación de la Transcripción Genética/efectos de los fármacos , Factores de Transcripción/genética , Terminación de la Transcripción Genética/efectos de los fármacos
17.
Proc Natl Acad Sci U S A ; 115(11): 2746-2751, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29483274

RESUMEN

Inorganic Pi is involved in all major biochemical pathways. Here we describe a previously unreported activity of Pi We show that Pi and its structural mimics, vanadate and arsenate, enhance nascent transcript cleavage by RNA polymerase (RNAP). They engage an Mg2+ ion in catalysis and activate an attacking water molecule. Pi, vanadate, and arsenate stimulate the intrinsic exonuclease activity of the enzyme nearly 2,000-fold at saturating concentrations of the reactant anions and Mg2+ This enhancement is comparable to that of specialized transcript cleavage protein factors Gre and TFIIS (3,000- to 4,000-fold). Unlike these protein factors, Pi and its analogs do not stimulate endonuclease transcript cleavage. Conversely, the protein factors only marginally enhance exonucleolytic cleavage. Pi thus complements cellular protein factors in assisting hydrolytic RNA cleavage by extending the repertoire of RNAP transcript degradation modes.


Asunto(s)
Arseniatos/química , ARN Polimerasas Dirigidas por ADN/química , Exonucleasas/química , Fosfatos/química , ARN/química , Vanadatos/química , Biocatálisis , ARN Polimerasas Dirigidas por ADN/metabolismo , Exonucleasas/metabolismo , Hidrólisis , Cinética , ARN/genética , ARN/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
18.
Cell Rep ; 21(5): 1375-1385, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29091773

RESUMEN

DNA interstrand crosslinks (ICLs) that are repaired in non-dividing cells must be recognized independently of replication-associated DNA unwinding. Using cell-free extracts from Xenopus eggs that support neither replication nor transcription, we establish that ICLs are recognized and processed by the mismatch repair (MMR) machinery. We find that ICL repair requires MutSα (MSH2-MSH6) and the mismatch recognition FXE motif in MSH6, strongly suggesting that MutSα functions as an ICL sensor. MutSα recruits MutLα and EXO1 to ICL lesions, and the catalytic activity of both these nucleases is essential for ICL repair. As anticipated for a DNA unwinding-independent recognition process, we demonstrate that least distorting ICLs fail to be recognized and repaired by the MMR machinery. This establishes that ICL structure is a critical determinant of repair efficiency outside of DNA replication.


Asunto(s)
Reparación de la Incompatibilidad de ADN/fisiología , ADN/metabolismo , Animales , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas MutL/metabolismo , Oocitos/metabolismo , Xenopus/crecimiento & desarrollo , Proteínas de Xenopus/metabolismo
19.
Sci Data ; 4: 170043, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28398335

RESUMEN

Genome-wide methylation analysis is limited by its low coverage and the inability to detect single variants below 10%. Quantitative analysis provides accurate information on the extent of methylation of single CpG dinucleotide, but it does not measure the actual polymorphism of the methylation profiles of single molecules. To understand the polymorphism of DNA methylation and to decode the methylation signatures before and after DNA damage and repair, we have deep sequenced in bisulfite-treated DNA a reporter gene undergoing site-specific DNA damage and homologous repair. In this paper, we provide information on the data generation, the rationale for the experiments and the type of assays used, such as cytofluorimetry and immunoblot data derived during a previous work published in Scientific Reports, describing the methylation and expression changes of a model gene (GFP) before and after formation of a double-strand break and repair by homologous-recombination or non-homologous-end-joining. These data provide: 1) a reference for the analysis of methylation polymorphism at selected loci in complex cell populations; 2) a platform and the tools to compare transcription and methylation profiles.


Asunto(s)
Daño del ADN , Metilación de ADN , Reparación del ADN , Secuencia de Bases , Humanos , Sulfitos
20.
Elife ; 62017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28318486

RESUMEN

Coliphage HK022 Nun blocks superinfection by coliphage λ by stalling RNA polymerase (RNAP) translocation specifically on λ DNA. To provide a structural framework to understand how Nun blocks RNAP translocation, we determined structures of Escherichia coli RNAP ternary elongation complexes (TECs) with and without Nun by single-particle cryo-electron microscopy. Nun fits tightly into the TEC by taking advantage of gaps between the RNAP and the nucleic acids. The C-terminal segment of Nun interacts with the RNAP ß and ß' subunits inside the RNAP active site cleft as well as with nearly every element of the nucleic acid scaffold, essentially crosslinking the RNAP and the nucleic acids to prevent translocation, a mechanism supported by the effects of Nun amino acid substitutions. The nature of Nun interactions inside the RNAP active site cleft suggests that RNAP clamp opening is required for Nun to establish its interactions, explaining why Nun acts on paused TECs.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/virología , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas Virales/química , Proteínas Virales/metabolismo , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/fisiología , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA