Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 161: 213884, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723432

RESUMEN

Prostate cancer (PCa) is a significant health problem in the male population of the Western world. Magnetic resonance elastography (MRE), an emerging medical imaging technique sensitive to mechanical properties of biological tissues, detects PCa based on abnormally high stiffness and viscosity values. Yet, the origin of these changes in tissue properties and how they correlate with histopathological markers and tumor aggressiveness are largely unknown, hindering the use of tumor biomechanical properties for establishing a noninvasive PCa staging system. To infer the contributions of extracellular matrix (ECM) components and cell motility, we investigated fresh tissue specimens from two PCa xenograft mouse models, PC3 and LNCaP, using magnetic resonance elastography (MRE), diffusion-weighted imaging (DWI), quantitative histology, and nuclear shape analysis. Increased tumor stiffness and impaired water diffusion were observed to be associated with collagen and elastin accumulation and decreased cell motility. Overall, LNCaP, while more representative of clinical PCa than PC3, accumulated fewer ECM components, induced less restriction of water diffusion, and exhibited increased cell motility, resulting in overall softer and less viscous properties. Taken together, our results suggest that prostate tumor stiffness increases with ECM accumulation and cell adhesion - characteristics that influence critical biological processes of cancer development. MRE paired with DWI provides a powerful set of imaging markers that can potentially predict prostate tumor development from benign masses to aggressive malignancies in patients. STATEMENT OF SIGNIFICANCE: Xenograft models of human prostate tumor cell lines, allowing correlation of microstructure-sensitive biophysical imaging parameters with quantitative histological methods, can be investigated to identify hallmarks of cancer.


Asunto(s)
Movimiento Celular , Diagnóstico por Imagen de Elasticidad , Matriz Extracelular , Neoplasias de la Próstata , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Humanos , Matriz Extracelular/patología , Matriz Extracelular/metabolismo , Diagnóstico por Imagen de Elasticidad/métodos , Animales , Ratones , Línea Celular Tumoral , Imagen de Difusión por Resonancia Magnética/métodos
2.
Glycobiology ; 34(3)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38206856

RESUMEN

Glycosylation is a prominent posttranslational modification, and alterations in glycosylation are a hallmark of cancer. Glycan-binding receptors, primarily expressed on immune cells, play a central role in glycan recognition and immune response. Here, we used the recombinant C-type glycan-binding receptors CD301, Langerin, SRCL, LSECtin, and DC-SIGNR to recognize their ligands on tissue microarrays (TMA) of a large cohort (n = 1859) of invasive breast cancer of different histopathological types to systematically determine the relevance of altered glycosylation in breast cancer. Staining frequencies of cancer cells were quantified in an unbiased manner by a computer-based algorithm. CD301 showed the highest overall staining frequency (40%), followed by LSECtin (16%), Langerin (4%) and DC-SIGNR (0.5%). By Kaplan-Meier analyses, we identified LSECtin and CD301 as prognostic markers in different breast cancer subtypes. Positivity for LSECtin was associated with inferior disease-free survival in all cases, particularly in estrogen receptor positive (ER+) breast cancer of higher histological grade. In triple negative breast cancer, positivity for CD301 correlated with a worse prognosis. Based on public RNA single-cell sequencing data of human breast cancer infiltrating immune cells, we found CLEC10A (CD301) and CLEC4G (LSECtin) exclusively expressed in distinct subpopulations, particularly in dendritic cells and macrophages, indicating that specific changes in glycosylation may play a significant role in breast cancer immune response and progression.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Pronóstico , Lectinas Tipo C/genética , Ligandos , Polisacáridos , Inmunidad Innata
3.
Sci Rep ; 13(1): 16402, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798300

RESUMEN

Gene expression signatures refer to patterns of gene activities and are used to classify different types of cancer, determine prognosis, and guide treatment decisions. Advancements in high-throughput technology and machine learning have led to improvements to predict a patient's prognosis for different cancer phenotypes. However, computational methods for analyzing signatures have not been used to evaluate their prognostic power. Contention remains on the utility of gene expression signatures for prognosis. The prevalent approaches include random signatures, expert knowledge, and machine learning to construct an improved signature. We unify these approaches to evaluate their prognostic power. Re-evaluation of publicly available gene-expression data from 8 databases with 9 machine-learning models revealed previously unreported results. Gene-expression signatures are confirmed to be useful in predicting a patient's prognosis. Convergent evidence from [Formula: see text] 10,000 signatures implicates a maximum prognostic power. By calculating the concordance index, which measures how well patients with different prognoses can be discriminated, we show that a signature can correctly discriminate patients' prognoses no more than 80% of the time. Additionally, we show that more than 50% of the potentially available information is still missing at this value. We surmise that an accurate prognosis must incorporate molecular, clinical, histological, and other complementary factors.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Pronóstico , Transcriptoma , Bases de Datos Factuales , Aprendizaje Automático , Perfilación de la Expresión Génica
4.
PLoS One ; 17(2): e0261035, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35143511

RESUMEN

The diagnosis of breast cancer-including determination of prognosis and prediction-has been traditionally based on clinical and pathological characteristics such as tumor size, nodal status, and tumor grade. The decision-making process has been expanded by the recent introduction of molecular signatures. These signatures, however, have not reached the highest levels of evidence thus far. Yet they have been brought to clinical practice based on statistical significance in prospective as well as retrospective studies. Intriguingly, it has also been reported that most random sets of genes are significantly associated with disease outcome. These facts raise two highly relevant questions: What information gain do these signatures procure? How can one find a signature that is substantially better than a random set of genes? Our study addresses these questions. To address the latter question, we present a hybrid signature that joins the traditional approach with the molecular one by combining the Nottingham Prognostic Index with gene expressions in a data-driven fashion. To address the issue of information gain, we perform careful statistical analysis and comparison of the hybrid signature, gene expression lists of two commercially available tests as well as signatures selected at random, and introduce the Signature Skill Score-a simple measure to assess improvement on random signatures. Despite being based on in silico data, our research is designed to be useful for the decision-making process of oncologists and strongly supports association of random signatures with outcome. Although our study shows that none of these signatures can be considered as the main candidate for providing prognostic information, it also demonstrates that both the hybrid signature and the gene expression list of the OncotypeDx signature identify patients who may not require adjuvant chemotherapy. More importantly, we show that combining signatures substantially improves the identification of patients who do not need adjuvant chemotherapy.


Asunto(s)
Algoritmos , Neoplasias de la Mama/diagnóstico , Área Bajo la Curva , Neoplasias de la Mama/genética , Árboles de Decisión , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , Modelos de Riesgos Proporcionales , Curva ROC
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...