Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 32(36): 36LT01, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32369787

RESUMEN

The thermodynamics in spin-ice systems are governed by emergent magnetic monopole excitations and, until now, the creation of a pair of these topological defects was associated with one specific pair-creation energy. Here, we show that the electric dipole moments inherent to the magnetic monopoles lift the degeneracy of their creation process and lead to a splitting of the pair-creation energy. We consider this finding to extend the model of magnetic relaxation in spin-ice systems and show that an electric dipole interaction in the theoretically estimated order of magnitude leads to a splitting which can explain the controversially discussed discrepancies between the measured temperature dependence of the magnetic relaxation times and previous theory. By applying our extended model to experimental data of, various spin-ice systems, we show its universal applicability and determine a dependence of the electric dipole interaction on the system parameters, which is in accordance with the theoretical model of electric dipole formation.

2.
Philos Trans A Math Phys Eng Sci ; 374(2074)2016 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-27402928

RESUMEN

Hysteresis is more than just an interesting oddity that occurs in materials with a first-order transition. It is a real obstacle on the path from existing laboratory-scale prototypes of magnetic refrigerators towards commercialization of this potentially disruptive cooling technology. Indeed, the reversibility of the magnetocaloric effect, being essential for magnetic heat pumps, strongly depends on the width of the thermal hysteresis and, therefore, it is necessary to understand the mechanisms causing hysteresis and to find solutions to minimize losses associated with thermal hysteresis in order to maximize the efficiency of magnetic cooling devices. In this work, we discuss the fundamental aspects that can contribute to thermal hysteresis and the strategies that we are developing to at least partially overcome the hysteresis problem in some selected classes of magnetocaloric materials with large application potential. In doing so, we refer to the most relevant classes of magnetic refrigerants La-Fe-Si-, Heusler- and Fe2P-type compounds.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

3.
Opt Express ; 21(23): 28987-99, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24514414

RESUMEN

The long-term stability of optical parametric chirped-pulse amplifiers is hindered by thermal path length drifts affecting the temporal pump-to-signal overlap. A kilowatt-pumped burst amplifier is presented delivering broadband 1.4 mJ pulses with a spectral bandwidth supporting sub-7 fs pulse duration. Active temporal overlap control can be achieved by feedback of optical timing signals from cross-correlation or spectral measurements. Using a balanced optical cross-correlator, we achieve a pump-to-signal synchronization with a residual jitter of only (46 ± 2) fs rms. Additionally, we propose passive pump-to-signal stabilization with an intrinsic jitter of (7.0 ± 0.5) fs rms using white-light continuum generation.

4.
Opt Lett ; 36(13): 2456-8, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21725443

RESUMEN

We report on a Yb:YAG Innoslab laser amplifier system for generation of subpicsecond high energy pump pulses for optical parametric chirped pulse amplification (OPCPA) at high repetition rates. Pulse energies of up to 20 mJ (at 12.5 kHz) and repetition rates of up to 100 kHz were attained with pulse durations of 830 fs and average power in excess of 200 W. We further investigate the possibility to use subpicosecond pulses to derive a stable continuum in a YAG crystal for OPCPA seeding.

5.
Opt Express ; 18(3): 3158-67, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20174154

RESUMEN

An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

6.
Opt Express ; 17(18): 16332-41, 2009 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-19724632

RESUMEN

We present a simple and robust pulse shaping device based on coherent pulse stacking. The device is embedded in a polarisation maintaining step index fiber. An input pulse is sent through a fiber optical circulator. Up to four pulse replicas are reflected by fiber Bragg gratings and interfere at the output. Temperature control allows tuning of the relative pulse phases of the sub-pulses. Additionally fine tuning of the sub-pulse amplitudes is demonstrated. We experimentally generated 235 ps and 416 ps long flattop pulses with rising and falling edges shorter than 100 ps. In contrast to other pulse shaping techniques the presented setup is robust, alignment free, provides excellent beam quality and is also suitable for pulse durations up to several nanoseconds.

7.
Opt Express ; 17(26): 24130-6, 2009 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-20052124

RESUMEN

We report on a compact Gigawatt peak power OPCPA system which is pumped by the second harmonic of an Yb-doped fiber amplifier and seeded by a cavity dumped Ti:Sapphire oscillator. Picosecond pump pulses for the OPCPA are generated by spectral filtering and directly amplified to 1 mJ pulse energy in several fiber amplifiers, without the need of chirped pulse amplification. Since no stretcher and compressor is required, the pump laser is very compact and easy to operate. The two stage optical parametric amplifier delivers 35 fs pulses with 53 microJ pulse energy and 1.1 GW peak power at 40 kHz repetition rate. Additionally, the scaling potential of this approach is discussed.


Asunto(s)
Amplificadores Electrónicos , Tecnología de Fibra Óptica/instrumentación , Rayos Láser , Procesamiento de Señales Asistido por Computador/instrumentación , Diseño Asistido por Computadora , Transferencia de Energía , Diseño de Equipo , Análisis de Falla de Equipo
8.
Opt Express ; 16(24): 19812-20, 2008 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-19030067

RESUMEN

Degenerated optical parametric amplification (OPA) is a well known technique to achieve broadband amplification necessary to generate ultrashort pulses. Here we present a parametric amplifier pumped by the frequency doubled output of a state-of-the-art fiber chirped pulse amplification system (FCPA) delivering mJ pulse energy at 30 kHz repetition rate and 650 fs pulse duration. The parametric amplifier and the FCPA system are both seeded by the same Yb:KGW oscillator. Additional spectral broadening of the OPA seed provides enough bandwidth for the generation of ultrashort pulses. After amplification in two 1mm BBO crystals a pulse energy of 90 microJ is yielded at 30 kHz. Subsequent compression with a sequence of chirped mirrors shortens the pulses to 29 fs while the pulse energy is as high as 81 microJ resulting in 2GW of peak power.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...