Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2404192, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38925664

RESUMEN

Rapid development of smart technologies poses a big challenge for magnetostrictive materials, which should not only permit isotropic and hysteresis-free actuation (i.e., non-hysteretic volume change) in magnetic fields, but also have high strength and high ductility. Unfortunately, the magnetostriction from self-assembly of ferromagnetic domains is volume-conserving; the volume magnetostriction from field-induced first-order phase transition has large intrinsic hysteresis; and most prototype magnetostrictive materials are intrinsically brittle. Here we report a magnetic high-entropy alloy (HEA) Fe35Co35Al10Cr10Ni10 that can rectify these challenges, exhibiting an unprecedented combination of large non-hysteretic volume magnetostriction, high tensile strength and large elongation strain, over a wide working temperature range from room temperature down to 100 K. Its exceptional properties stem from a dual-phase microstructure, where the face-centered-cubic (FCC) matrix phase with nano-scale compositional and structural fluctuations can enable a magnetic-field-induced transition from low-spin small-volume state to high-spin large-volume state, and the ordered body-centered-cubic (BCC) B2 phase contributes to mechanical strengthening. The present findings may provide insights into designing unconventional and technologically-important magnetostrictive materials. This article is protected by copyright. All rights reserved.

3.
Nat Commun ; 8: 13937, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28098145

RESUMEN

All ferromagnetic materials show deterioration of magnetism-related properties such as magnetization and magnetostriction with increasing temperature, as the result of gradual loss of magnetic order with approaching Curie temperature TC. However, technologically, it is highly desired to find a magnetic material that can resist such magnetism deterioration and maintain stable magnetism up to its TC, but this seems against the conventional wisdom about ferromagnetism. Here we show that a Fe-Ga alloy exhibits highly thermal-stable magnetization up to the vicinity of its TC, 880 K. Also, the magnetostriction shows nearly no deterioration over a very wide temperature range. Such unusual behaviour stems from dual-magnetic-phase nature of this alloy, in which a gradual structural-magnetic transformation occurs between two magnetic phases so that the magnetism deterioration is compensated by the growth of the ferromagnetic phase with larger magnetization. Our finding may help to develop highly thermal-stable ferromagnetic and magnetostrictive materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...