Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37298313

RESUMEN

Coenzyme A (CoA) is a key cellular metabolite which participates in diverse metabolic pathways, regulation of gene expression and the antioxidant defense mechanism. Human NME1 (hNME1), which is a moonlighting protein, was identified as a major CoA-binding protein. Biochemical studies showed that hNME1 is regulated by CoA through both covalent and non-covalent binding, which leads to a decrease in the hNME1 nucleoside diphosphate kinase (NDPK) activity. In this study, we expanded the knowledge on previous findings by focusing on the non-covalent mode of CoA binding to the hNME1. With X-ray crystallography, we solved the CoA bound structure of hNME1 (hNME1-CoA) and determined the stabilization interactions CoA forms within the nucleotide-binding site of hNME1. A hydrophobic patch stabilizing the CoA adenine ring, while salt bridges and hydrogen bonds stabilizing the phosphate groups of CoA were observed. With molecular dynamics studies, we extended our structural analysis by characterizing the hNME1-CoA structure and elucidating possible orientations of the pantetheine tail, which is absent in the X-ray structure due to its flexibility. Crystallographic studies suggested the involvement of arginine 58 and threonine 94 in mediating specific interactions with CoA. Site-directed mutagenesis and CoA-based affinity purifications showed that arginine 58 mutation to glutamate (R58E) and threonine 94 mutation to aspartate (T94D) prevent hNME1 from binding to CoA. Overall, our results reveal a unique mode by which hNME1 binds CoA, which differs significantly from that of ADP binding: the α- and ß-phosphates of CoA are oriented away from the nucleotide-binding site, while 3'-phosphate faces catalytic histidine 118 (H118). The interactions formed by the CoA adenine ring and phosphate groups contribute to the specific mode of CoA binding to hNME1.


Asunto(s)
Nucleótidos , Treonina , Humanos , Cristalografía por Rayos X , Sitios de Unión , Coenzima A , Arginina , Adenina , Nucleósido Difosfato Quinasas NM23/genética
2.
Nat Struct Mol Biol ; 29(12): 1159-1169, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36424526

RESUMEN

RNA polymerase II (Pol II) carries out transcription of both protein-coding and non-coding genes. Whereas Pol II initiation at protein-coding genes has been studied in detail, Pol II initiation at non-coding genes, such as small nuclear RNA (snRNA) genes, is less well understood at the structural level. Here, we study Pol II initiation at snRNA gene promoters and show that the snRNA-activating protein complex (SNAPc) enables DNA opening and transcription initiation independent of TFIIE and TFIIH in vitro. We then resolve cryo-EM structures of the SNAPc-containing Pol IIpre-initiation complex (PIC) assembled on U1 and U5 snRNA promoters. The core of SNAPc binds two turns of DNA and recognizes the snRNA promoter-specific proximal sequence element (PSE), located upstream of the TATA box-binding protein TBP. Two extensions of SNAPc, called wing-1 and wing-2, bind TFIIA and TFIIB, respectively, explaining how SNAPc directs Pol II to snRNA promoters. Comparison of structures of closed and open promoter complexes elucidates TFIIH-independent DNA opening. These results provide the structural basis of Pol II initiation at non-coding RNA gene promoters.


Asunto(s)
ARN Polimerasa II , Factores de Transcripción , Animales , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , ARN Polimerasa III/genética , Transcripción Genética , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , ADN
3.
Antioxidants (Basel) ; 10(7)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202320

RESUMEN

Reactive oxygen species (ROS) play an important role in cell proliferation and differentiation. They are also by-products of aerobic living conditions. Their inherent reactivity poses a threat for all cellular components. Cells have, therefore, evolved complex pathways to sense and maintain the redox balance. Among them, Nrf2 (Nuclear factor erythroid 2-related factor 2) plays a crucial role: it is activated under oxidative conditions and is responsible for the expression of the detoxification machinery and antiapoptotic factors. It is, however, a double edge sword: whilst it prevents tumorigenesis in healthy cells, its constitutive activation in cancer promotes tumour growth and metastasis. In addition, recent data have highlighted the importance of Nrf2 in evading programmed cell death. In this review, we will focus on the activation of the Nrf2 pathway in the cytoplasm, the molecular basis underlying Nrf2 binding to the DNA, and the dysregulation of this pathway in cancer, before discussing how Nrf2 contributes to the prevention of apoptosis and ferroptosis in cancer and how it is likely to be linked to detoxifying enzymes containing selenium.

4.
Redox Biol ; 44: 101978, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33903070

RESUMEN

The metastasis suppressor protein NME1 is an evolutionarily conserved and multifunctional enzyme that plays an important role in suppressing the invasion and metastasis of tumour cells. The nucleoside diphosphate kinase (NDPK) activity of NME1 is well recognized in balancing the intracellular pools of nucleotide diphosphates and triphosphates to regulate cytoskeletal rearrangement and cell motility, endocytosis, intracellular trafficking, and metastasis. In addition, NME1 was found to function as a protein-histidine kinase, 3'-5' exonuclease and geranyl/farnesyl pyrophosphate kinase. These diverse cellular functions are regulated at the level of expression, post-translational modifications, and regulatory interactions. The NDPK activity of NME1 has been shown to be inhibited in vitro and in vivo under oxidative stress, and the inhibitory effect mediated via redox-sensitive cysteine residues. In this study, affinity purification followed by mass spectrometric analysis revealed NME1 to be a major coenzyme A (CoA) binding protein in cultured cells and rat tissues. NME1 is also found covalently modified by CoA (CoAlation) at Cys109 in the CoAlome analysis of HEK293/Pank1ß cells treated with the disulfide-stress inducer, diamide. Further analysis showed that recombinant NME1 is efficiently CoAlated in vitro and in cellular response to oxidising agents and metabolic stress. In vitro CoAlation of recombinant wild type NME1, but not the C109A mutant, results in the inhibition of its NDPK activity. Moreover, CoA also functions as a competitive inhibitor of the NME1 NDPK activity by binding non-covalently to the nucleotide binding site. Taken together, our data reveal metastasis suppressor protein NME1 as a novel binding partner of the key metabolic regulator CoA, which inhibits its nucleoside diphosphate kinase activity via non-covalent and covalent interactions.


Asunto(s)
Coenzima A , Neoplasias , Animales , Células HEK293 , Humanos , Nucleósido Difosfato Quinasas NM23/metabolismo , Metástasis de la Neoplasia , Oxidación-Reducción , Ratas
5.
Nat Commun ; 11(1): 6409, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335104

RESUMEN

In eukaryotes, RNA Polymerase (Pol) III is specialized for the transcription of tRNAs and other short, untranslated RNAs. Pol III is a determinant of cellular growth and lifespan across eukaryotes. Upregulation of Pol III transcription is observed in cancer and causative Pol III mutations have been described in neurodevelopmental disorders and hypersensitivity to viral infection. Here, we report a cryo-EM reconstruction at 4.0 Å of human Pol III, allowing mapping and rationalization of reported genetic mutations. Mutations causing neurodevelopmental defects cluster in hotspots affecting Pol III stability and/or biogenesis, whereas mutations affecting viral sensing are located in proximity to DNA binding regions, suggesting an impairment of Pol III cytosolic viral DNA-sensing. Integrating x-ray crystallography and SAXS, we also describe the structure of the higher eukaryote specific RPC5 C-terminal extension. Surprisingly, experiments in living cells highlight a role for this module in the assembly and stability of human Pol III.


Asunto(s)
ARN Polimerasa III/química , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/genética , Estabilidad de Enzimas , Células HeLa , Humanos , Modelos Moleculares , Mutación , Conformación Proteica , Subunidades de Proteína , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X
6.
Nat Commun ; 11(1): 2828, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32504003

RESUMEN

The TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. The reason for the emergence and strict requirement of the additional initiation factor Bdp1 in the RNA polymerase (RNAP) III system, however, remained elusive. A poorly studied aspect in this context is the effect of DNA strain arising from DNA compaction and transcriptional activity on initiation complex formation. We made use of a DNA origami-based force clamp to follow the assembly of human initiation complexes in the RNAP II and RNAP III systems at the single-molecule level under piconewton forces. We demonstrate that TBP-DNA complexes are force-sensitive and TFIIB is sufficient to stabilise TBP on a strained promoter. In contrast, Bdp1 is the pivotal component that ensures stable anchoring of initiation factors, and thus the polymerase itself, in the RNAP III system. Thereby, we offer an explanation for the crucial role of Bdp1 for the high transcriptional output of RNAP III.


Asunto(s)
ADN de Cadena Simple/metabolismo , ARN Polimerasa III/metabolismo , Imagen Individual de Molécula/métodos , Factor de Transcripción TFIIIB/metabolismo , Transcripción Genética , ADN de Cadena Simple/química , ADN de Cadena Simple/ultraestructura , Transferencia Resonante de Energía de Fluorescencia , Cinética , Microscopía Confocal , Microscopía Electrónica de Transmisión , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Sondas Moleculares/ultraestructura , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Estabilidad Proteica , ARN Polimerasa III/química , Proteínas Recombinantes/metabolismo , Proteína de Unión a TATA-Box/metabolismo
7.
Cancers (Basel) ; 12(6)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585905

RESUMEN

Klotho was first discovered as an anti-ageing protein linked to a number of age-related disease processes, including cardiovascular, renal, musculoskeletal, and neurodegenerative conditions. Emerging research has also demonstrated a potential therapeutic role for Klotho in cancer biology, which is perhaps unsurprising given that cancer and ageing share similar molecular hallmarks. In addition to functioning as a tumour suppressor in numerous solid tumours and haematological malignancies, Klotho represents a candidate therapeutic target for patients with these diseases, the majority of whom have limited treatment options. Here, we examine contemporary evidence evaluating the anti-neoplastic effects of Klotho and describe the modulation of downstream oncogenic signalling pathways, including Wnt/ß-catenin, FGF, IGF1, PIK3K/AKT, TGFß, and the Unfolded Protein Response. We also discuss possible approaches to developing therapeutic Klotho and consider technological advances that may facilitate the delivery of Klotho through gene therapy.

8.
Genes Dev ; 32(9-10): 711-722, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29785964

RESUMEN

RNA polymerase II (Pol II) small nuclear RNA (snRNA) promoters and type 3 Pol III promoters have highly similar structures; both contain an interchangeable enhancer and "proximal sequence element" (PSE), which recruits the SNAP complex (SNAPc). The main distinguishing feature is the presence, in the type 3 promoters only, of a TATA box, which determines Pol III specificity. To understand the mechanism by which the absence or presence of a TATA box results in specific Pol recruitment, we examined how SNAPc and general transcription factors required for Pol II or Pol III transcription of SNAPc-dependent genes (i.e., TATA-box-binding protein [TBP], TFIIB, and TFIIA for Pol II transcription and TBP and BRF2 for Pol III transcription) assemble to ensure specific Pol recruitment. TFIIB and BRF2 could each, in a mutually exclusive fashion, be recruited to SNAPc. In contrast, TBP-TFIIB and TBP-BRF2 complexes were not recruited unless a TATA box was present, which allowed selective and efficient recruitment of the TBP-BRF2 complex. Thus, TBP both prevented BRF2 recruitment to Pol II promoters and enhanced BRF2 recruitment to Pol III promoters. On Pol II promoters, TBP recruitment was separate from TFIIB recruitment and enhanced by TFIIA. Our results provide a model for specific Pol recruitment at SNAPc-dependent promoters.


Asunto(s)
Regiones Promotoras Genéticas , ARN Polimerasa III/metabolismo , ARN Polimerasa II/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Células HEK293 , Humanos , Mutación , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , TATA Box/genética , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIB/metabolismo , Factores de Transcripción/metabolismo
9.
Transcription ; 9(1): 61-66, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28854119

RESUMEN

Here, we discuss the role of Brf2, an RNA Polymerase III core transcription factor, as a master switch of the oxidative stress response. We highlight the interplay of Brf2 with the Nrf2/Keap1 pathway, as well as the role of Brf2 in cancer and other possible regulations.


Asunto(s)
Neoplasias/genética , Estrés Oxidativo/genética , ARN Polimerasa III/metabolismo , Factor de Transcripción TFIIIB/metabolismo , Transcripción Genética , Humanos , Neoplasias/metabolismo
10.
Nat Commun ; 8(1): 130, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28743884

RESUMEN

Initiation of gene transcription by RNA polymerase (Pol) III requires the activity of TFIIIB, a complex formed by Brf1 (or Brf2), TBP (TATA-binding protein), and Bdp1. TFIIIB is required for recruitment of Pol III and to promote the transition from a closed to an open Pol III pre-initiation complex, a process dependent on the activity of the Bdp1 subunit. Here, we present a crystal structure of a Brf2-TBP-Bdp1 complex bound to DNA at 2.7 Å resolution, integrated with single-molecule FRET analysis and in vitro biochemical assays. Our study provides a structural insight on how Bdp1 is assembled into TFIIIB complexes, reveals structural and functional similarities between Bdp1 and Pol II factors TFIIA and TFIIF, and unravels essential interactions with DNA and with the upstream factor SNAPc. Furthermore, our data support the idea of a concerted mechanism involving TFIIIB and RNA polymerase III subunits for the closed to open pre-initiation complex transition.Transcription initiation by RNA polymerase III requires TFIIIB, a complex formed by Brf1/Brf2, TBP and Bdp1. Here, the authors describe the crystal structure of a Brf2-TBP-Bdp1 complex bound to a DNA promoter and characterize the role of Bdp1 in TFIIIB assembly and pre-initiation complex formation.


Asunto(s)
ARN Polimerasa III/metabolismo , Factor de Transcripción TFIIIB/metabolismo , Iniciación de la Transcripción Genética , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Unión Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/genética
11.
Cell ; 163(6): 1375-87, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638071

RESUMEN

TFIIB-related factor 2 (Brf2) is a member of the family of TFIIB-like core transcription factors. Brf2 recruits RNA polymerase (Pol) III to type III gene-external promoters, including the U6 spliceosomal RNA and selenocysteine tRNA genes. Found only in vertebrates, Brf2 has been linked to tumorigenesis but the underlying mechanisms remain elusive. We have solved crystal structures of a human Brf2-TBP complex bound to natural promoters, obtaining a detailed view of the molecular interactions occurring at Brf2-dependent Pol III promoters and highlighting the general structural and functional conservation of human Pol II and Pol III pre-initiation complexes. Surprisingly, our structural and functional studies unravel a Brf2 redox-sensing module capable of specifically regulating Pol III transcriptional output in living cells. Furthermore, we establish Brf2 as a central redox-sensing transcription factor involved in the oxidative stress pathway and provide a mechanistic model for Brf2 genetic activation in lung and breast cancer.


Asunto(s)
Oxidación-Reducción , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae , Alineación de Secuencia , Transducción de Señal
12.
EMBO J ; 34(8): 1126-42, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25762590

RESUMEN

Eukaryotic DNA polymerase mu of the PolX family can promote the association of the two 3'-protruding ends of a DNA double-strand break (DSB) being repaired (DNA synapsis) even in the absence of the core non-homologous end-joining (NHEJ) machinery. Here, we show that terminal deoxynucleotidyltransferase (TdT), a closely related PolX involved in V(D)J recombination, has the same property. We solved its crystal structure with an annealed DNA synapsis containing one micro-homology (MH) base pair and one nascent base pair. This structure reveals how the N-terminal domain and Loop 1 of Tdt cooperate for bridging the two DNA ends, providing a templating base in trans and limiting the MH search region to only two base pairs. A network of ordered water molecules is proposed to assist the incorporation of any nucleotide independently of the in trans templating base. These data are consistent with a recent model that explains the statistics of sequences synthesized in vivo by Tdt based solely on this dinucleotide step. Site-directed mutagenesis and functional tests suggest that this structural model is also valid for Pol mu during NHEJ.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Polimerasa Dirigida por ADN/química , Células Eucariotas/metabolismo , Animales , Secuencia de Bases , Cristalografía por Rayos X , ADN Nucleotidilexotransferasa/química , ADN Nucleotidilexotransferasa/fisiología , ADN Polimerasa Dirigida por ADN/fisiología , Ratones , Modelos Moleculares , Conformación Proteica , Recombinación V(D)J
13.
J Med Chem ; 56(18): 7431-41, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-23968551

RESUMEN

Terminal deoxynucletidyl transferase (TdT) is overexpressed in some cancer types, where it might compete with pol µ during the mutagenic repair of double strand breaks (DSBs) through the nonhomologous end joining (NHEJ) pathway. Here we report the discovery and characterization of pyrrolyl and indolyl diketo acids that specifically target TdT and behave as nucleotide-competitive inhibitors. These compounds show a selective toxicity toward MOLT-4 compared to HeLa cells that correlate well with in vitro selectivity for TdT. The binding site of two of these inhibitors was determined by cocrystallization with TdT, explaining why these compounds are competitive inhibitors of the deoxynucleotide triphosphate (dNTP). In addition, because of the observed dual localization of the phenyl substituent, these studies open the possibility of rationally designing more potent compounds.


Asunto(s)
Unión Competitiva , ADN Nucleotidilexotransferasa/antagonistas & inhibidores , ADN Nucleotidilexotransferasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Nucleótidos/metabolismo , Apoptosis/efectos de los fármacos , Dominio Catalítico , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Cristalografía por Rayos X , ADN Nucleotidilexotransferasa/química , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Nucleótidos de Desoxiadenina/metabolismo , Didesoxinucleótidos/metabolismo , Descubrimiento de Drogas , Inhibidores Enzimáticos/metabolismo , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo , Ácidos Hexurónicos/farmacología , Humanos , Modelos Moleculares
14.
J Mol Biol ; 425(22): 4334-52, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23856622

RESUMEN

Terminal deoxynucleotidyltransferase (Tdt) is a non-templated eukaryotic DNA polymerase of the polX family that is responsible for the random addition of nucleotides at the V(D)J junctions of immunoglobulins and T-cell receptors. Here we describe a series of high-resolution X-ray structures that mimic the pre-catalytic state, the post-catalytic state and a competent state that can be transformed into the two other ones in crystallo via the addition of dAMPcPP and Zn(2+), respectively. We examined the effect of Mn(2+), Co(2+) and Zn(2+) because they all have a marked influence on the kinetics of the reaction. We demonstrate a dynamic role of divalent transition metal ions bound to site A: (i) Zn(2+) (or Co(2+)) in Metal A site changes coordination from octahedral to tetrahedral after the chemical step, which explains the known higher affinity of Tdt for the primer strand when these ions are present, and (ii) metal A has to leave to allow the translocation of the primer strand and to clear the active site, a typical feature for a ratchet-like mechanism. Except for Zn(2+), the sugar puckering of the primer strand 3' terminus changes from C2'-endo to C3'-endo during catalysis. In addition, our data are compatible with a scheme where metal A is the last component that binds to the active site to complete its productive assembly, as already inferred in human pol beta. The new structures have potential implications for modeling pol mu, a closely related polX implicated in the repair of DNA double-strand breaks, in a complex with a DNA synapsis.


Asunto(s)
ADN Nucleotidilexotransferasa/química , Catálisis , Dominio Catalítico , Cobalto/química , Cobalto/metabolismo , Cristalografía por Rayos X , ADN Nucleotidilexotransferasa/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Humanos , Iones/química , Iones/metabolismo , Ligandos , Metales/química , Metales/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Especificidad por Sustrato , Zinc/química , Zinc/metabolismo
15.
J Mol Biol ; 423(3): 315-36, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22902479

RESUMEN

Euryarchaeal polymerase B can recognize deaminated bases on the template strand, effectively stalling the replication fork 4nt downstream the modified base. Using Pyrococcus abyssi DNA B family polymerase (PabPolB), we investigated the discrimination between deaminated and natural nucleotide(s) by primer extension assays, electrophoretic mobility shift assays, and X-ray crystallography. Structures of complexes between the protein and DNA duplexes with either a dU or a dH in position +4 were solved at 2.3Å and 2.9Å resolution, respectively. The PabPolB is found in the editing mode. A new metal binding site has been uncovered below the base-checking cavity where the +4 base is flipped out; it is fully hydrated in an octahedral fashion and helps guide the strongly kinked template strand. Four other crystal structures with each of the canonical bases were also solved in the editing mode, and the presence of three nucleotides in the exonuclease site caused a shift in the coordination state of its metal A from octahedral to tetrahedral. Surprisingly, we find that all canonical bases also enter the base-checking pocket with very small differences in the binding geometry and in the calculated binding free energy compared to deaminated ones. To explain how this can lead to stalling of the replication fork, the full catalytic pathway and its branches must be taken into account, during which the base is checked several times. Our results strongly suggest a switch from elongation to editing modes right after nucleotide insertion when the modified base is at position +5.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Pyrococcus abyssi/enzimología , Pyrococcus abyssi/genética , Complejos de Coordinación/metabolismo , Cristalografía por Rayos X , Replicación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Desaminación , Ensayo de Cambio de Movilidad Electroforética , Nucleótidos/genética , Nucleótidos/metabolismo , Estructura Terciaria de Proteína
16.
Nucleic Acids Res ; 37(14): 4642-56, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19502493

RESUMEN

Terminal deoxynucleotidyltransferase (Tdt) and DNA polymerase mu (pol mu) are two eukaryotic highly similar proteins involved in DNA processing and repair. Despite their high sequence identity, they differ widely in their activity: pol mu has a templated polymerase activity, whereas Tdt has a non-templated one. Loop1, first described when the Tdt structure was solved, has been invoked as the major structural determinant of this difference. Here we describe attempts to transform Tdt into pol mu with the minimal number of mutations in and around Loop1. First we describe the effect of mutations on six different positions chosen to destabilize Tdt Loop1 structure, either by alanine substitution or by deletion; they result at most in a reduction of Tdt activity, but adding Co(++) restores most of this Tdt activity. However, a deletion of the entire Loop1 as in pol lambda does confer a limited template-dependent polymerase behavior to Tdt while a chimera bearing an extended pol mu Loop1 reproduces pol mu behavior. Finally, 16 additional substitutions are reported, targeted at the two so-called 'sequence determinant' regions located just after Loop1 or underneath. Among them, the single-point mutant F401A displays a sequence-specific replicative polymerase phenotype that is stable upon Co(++) addition. These results are discussed in light of the available crystal structures.


Asunto(s)
ADN Nucleotidilexotransferasa/química , ADN Nucleotidilexotransferasa/genética , ADN Polimerasa Dirigida por ADN/química , Mutación , Secuencia de Aminoácidos , Cobalto/química , Cristalografía , ADN Nucleotidilexotransferasa/metabolismo , ADN Polimerasa beta/química , ADN Polimerasa Dirigida por ADN/metabolismo , Datos de Secuencia Molecular , Nucleótidos/metabolismo , Mutación Puntual , Conformación Proteica , Eliminación de Secuencia , Moldes Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...